serde/de/mod.rs
1//! Generic data structure deserialization framework.
2//!
3//! The two most important traits in this module are [`Deserialize`] and
4//! [`Deserializer`].
5//!
6//! - **A type that implements `Deserialize` is a data structure** that can be
7//! deserialized from any data format supported by Serde, and conversely
8//! - **A type that implements `Deserializer` is a data format** that can
9//! deserialize any data structure supported by Serde.
10//!
11//! # The Deserialize trait
12//!
13//! Serde provides [`Deserialize`] implementations for many Rust primitive and
14//! standard library types. The complete list is below. All of these can be
15//! deserialized using Serde out of the box.
16//!
17//! Additionally, Serde provides a procedural macro called [`serde_derive`] to
18//! automatically generate [`Deserialize`] implementations for structs and enums
19//! in your program. See the [derive section of the manual] for how to use this.
20//!
21//! In rare cases it may be necessary to implement [`Deserialize`] manually for
22//! some type in your program. See the [Implementing `Deserialize`] section of
23//! the manual for more about this.
24//!
25//! Third-party crates may provide [`Deserialize`] implementations for types
26//! that they expose. For example the [`linked-hash-map`] crate provides a
27//! [`LinkedHashMap<K, V>`] type that is deserializable by Serde because the
28//! crate provides an implementation of [`Deserialize`] for it.
29//!
30//! # The Deserializer trait
31//!
32//! [`Deserializer`] implementations are provided by third-party crates, for
33//! example [`serde_json`], [`serde_yaml`] and [`postcard`].
34//!
35//! A partial list of well-maintained formats is given on the [Serde
36//! website][data formats].
37//!
38//! # Implementations of Deserialize provided by Serde
39//!
40//! This is a slightly different set of types than what is supported for
41//! serialization. Some types can be serialized by Serde but not deserialized.
42//! One example is `OsStr`.
43//!
44//! - **Primitive types**:
45//! - bool
46//! - i8, i16, i32, i64, i128, isize
47//! - u8, u16, u32, u64, u128, usize
48//! - f32, f64
49//! - char
50//! - **Compound types**:
51//! - \[T; 0\] through \[T; 32\]
52//! - tuples up to size 16
53//! - **Common standard library types**:
54//! - String
55//! - Option\<T\>
56//! - Result\<T, E\>
57//! - PhantomData\<T\>
58//! - **Wrapper types**:
59//! - Box\<T\>
60//! - Box\<\[T\]\>
61//! - Box\<str\>
62//! - Cow\<'a, T\>
63//! - Cell\<T\>
64//! - RefCell\<T\>
65//! - Mutex\<T\>
66//! - RwLock\<T\>
67//! - Rc\<T\> *(if* features = \["rc"\] *is enabled)*
68//! - Arc\<T\> *(if* features = \["rc"\] *is enabled)*
69//! - **Collection types**:
70//! - BTreeMap\<K, V\>
71//! - BTreeSet\<T\>
72//! - BinaryHeap\<T\>
73//! - HashMap\<K, V, H\>
74//! - HashSet\<T, H\>
75//! - LinkedList\<T\>
76//! - VecDeque\<T\>
77//! - Vec\<T\>
78//! - **Zero-copy types**:
79//! - &str
80//! - &\[u8\]
81//! - **FFI types**:
82//! - CString
83//! - Box\<CStr\>
84//! - OsString
85//! - **Miscellaneous standard library types**:
86//! - Duration
87//! - SystemTime
88//! - Path
89//! - PathBuf
90//! - Range\<T\>
91//! - RangeInclusive\<T\>
92//! - Bound\<T\>
93//! - num::NonZero*
94//! - `!` *(unstable)*
95//! - **Net types**:
96//! - IpAddr
97//! - Ipv4Addr
98//! - Ipv6Addr
99//! - SocketAddr
100//! - SocketAddrV4
101//! - SocketAddrV6
102//!
103//! [Implementing `Deserialize`]: https://serde.rs/impl-deserialize.html
104//! [`Deserialize`]: ../trait.Deserialize.html
105//! [`Deserializer`]: ../trait.Deserializer.html
106//! [`LinkedHashMap<K, V>`]: https://docs.rs/linked-hash-map/*/linked_hash_map/struct.LinkedHashMap.html
107//! [`postcard`]: https://github.com/jamesmunns/postcard
108//! [`linked-hash-map`]: https://crates.io/crates/linked-hash-map
109//! [`serde_derive`]: https://crates.io/crates/serde_derive
110//! [`serde_json`]: https://github.com/serde-rs/json
111//! [`serde_yaml`]: https://github.com/dtolnay/serde-yaml
112//! [derive section of the manual]: https://serde.rs/derive.html
113//! [data formats]: https://serde.rs/#data-formats
114
115use crate::lib::*;
116
117////////////////////////////////////////////////////////////////////////////////
118
119pub mod value;
120
121mod ignored_any;
122mod impls;
123pub(crate) mod size_hint;
124
125pub use self::ignored_any::IgnoredAny;
126
127#[cfg(all(not(feature = "std"), no_core_error))]
128#[doc(no_inline)]
129pub use crate::std_error::Error as StdError;
130#[cfg(not(any(feature = "std", no_core_error)))]
131#[doc(no_inline)]
132pub use core::error::Error as StdError;
133#[cfg(feature = "std")]
134#[doc(no_inline)]
135pub use std::error::Error as StdError;
136
137////////////////////////////////////////////////////////////////////////////////
138
139macro_rules! declare_error_trait {
140 (Error: Sized $(+ $($supertrait:ident)::+)*) => {
141 /// The `Error` trait allows `Deserialize` implementations to create descriptive
142 /// error messages belonging to the `Deserializer` against which they are
143 /// currently running.
144 ///
145 /// Every `Deserializer` declares an `Error` type that encompasses both
146 /// general-purpose deserialization errors as well as errors specific to the
147 /// particular deserialization format. For example the `Error` type of
148 /// `serde_json` can represent errors like an invalid JSON escape sequence or an
149 /// unterminated string literal, in addition to the error cases that are part of
150 /// this trait.
151 ///
152 /// Most deserializers should only need to provide the `Error::custom` method
153 /// and inherit the default behavior for the other methods.
154 ///
155 /// # Example implementation
156 ///
157 /// The [example data format] presented on the website shows an error
158 /// type appropriate for a basic JSON data format.
159 ///
160 /// [example data format]: https://serde.rs/data-format.html
161 pub trait Error: Sized $(+ $($supertrait)::+)* {
162 /// Raised when there is general error when deserializing a type.
163 ///
164 /// The message should not be capitalized and should not end with a period.
165 ///
166 /// ```edition2021
167 /// # use std::str::FromStr;
168 /// #
169 /// # struct IpAddr;
170 /// #
171 /// # impl FromStr for IpAddr {
172 /// # type Err = String;
173 /// #
174 /// # fn from_str(_: &str) -> Result<Self, String> {
175 /// # unimplemented!()
176 /// # }
177 /// # }
178 /// #
179 /// use serde::de::{self, Deserialize, Deserializer};
180 ///
181 /// impl<'de> Deserialize<'de> for IpAddr {
182 /// fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
183 /// where
184 /// D: Deserializer<'de>,
185 /// {
186 /// let s = String::deserialize(deserializer)?;
187 /// s.parse().map_err(de::Error::custom)
188 /// }
189 /// }
190 /// ```
191 fn custom<T>(msg: T) -> Self
192 where
193 T: Display;
194
195 /// Raised when a `Deserialize` receives a type different from what it was
196 /// expecting.
197 ///
198 /// The `unexp` argument provides information about what type was received.
199 /// This is the type that was present in the input file or other source data
200 /// of the Deserializer.
201 ///
202 /// The `exp` argument provides information about what type was being
203 /// expected. This is the type that is written in the program.
204 ///
205 /// For example if we try to deserialize a String out of a JSON file
206 /// containing an integer, the unexpected type is the integer and the
207 /// expected type is the string.
208 #[cold]
209 fn invalid_type(unexp: Unexpected, exp: &Expected) -> Self {
210 Error::custom(format_args!("invalid type: {}, expected {}", unexp, exp))
211 }
212
213 /// Raised when a `Deserialize` receives a value of the right type but that
214 /// is wrong for some other reason.
215 ///
216 /// The `unexp` argument provides information about what value was received.
217 /// This is the value that was present in the input file or other source
218 /// data of the Deserializer.
219 ///
220 /// The `exp` argument provides information about what value was being
221 /// expected. This is the type that is written in the program.
222 ///
223 /// For example if we try to deserialize a String out of some binary data
224 /// that is not valid UTF-8, the unexpected value is the bytes and the
225 /// expected value is a string.
226 #[cold]
227 fn invalid_value(unexp: Unexpected, exp: &Expected) -> Self {
228 Error::custom(format_args!("invalid value: {}, expected {}", unexp, exp))
229 }
230
231 /// Raised when deserializing a sequence or map and the input data contains
232 /// too many or too few elements.
233 ///
234 /// The `len` argument is the number of elements encountered. The sequence
235 /// or map may have expected more arguments or fewer arguments.
236 ///
237 /// The `exp` argument provides information about what data was being
238 /// expected. For example `exp` might say that a tuple of size 6 was
239 /// expected.
240 #[cold]
241 fn invalid_length(len: usize, exp: &Expected) -> Self {
242 Error::custom(format_args!("invalid length {}, expected {}", len, exp))
243 }
244
245 /// Raised when a `Deserialize` enum type received a variant with an
246 /// unrecognized name.
247 #[cold]
248 fn unknown_variant(variant: &str, expected: &'static [&'static str]) -> Self {
249 if expected.is_empty() {
250 Error::custom(format_args!(
251 "unknown variant `{}`, there are no variants",
252 variant
253 ))
254 } else {
255 Error::custom(format_args!(
256 "unknown variant `{}`, expected {}",
257 variant,
258 OneOf { names: expected }
259 ))
260 }
261 }
262
263 /// Raised when a `Deserialize` struct type received a field with an
264 /// unrecognized name.
265 #[cold]
266 fn unknown_field(field: &str, expected: &'static [&'static str]) -> Self {
267 if expected.is_empty() {
268 Error::custom(format_args!(
269 "unknown field `{}`, there are no fields",
270 field
271 ))
272 } else {
273 Error::custom(format_args!(
274 "unknown field `{}`, expected {}",
275 field,
276 OneOf { names: expected }
277 ))
278 }
279 }
280
281 /// Raised when a `Deserialize` struct type expected to receive a required
282 /// field with a particular name but that field was not present in the
283 /// input.
284 #[cold]
285 fn missing_field(field: &'static str) -> Self {
286 Error::custom(format_args!("missing field `{}`", field))
287 }
288
289 /// Raised when a `Deserialize` struct type received more than one of the
290 /// same field.
291 #[cold]
292 fn duplicate_field(field: &'static str) -> Self {
293 Error::custom(format_args!("duplicate field `{}`", field))
294 }
295 }
296 }
297}
298
299#[cfg(feature = "std")]
300declare_error_trait!(Error: Sized + StdError);
301
302#[cfg(not(feature = "std"))]
303declare_error_trait!(Error: Sized + Debug + Display);
304
305/// `Unexpected` represents an unexpected invocation of any one of the `Visitor`
306/// trait methods.
307///
308/// This is used as an argument to the `invalid_type`, `invalid_value`, and
309/// `invalid_length` methods of the `Error` trait to build error messages.
310///
311/// ```edition2021
312/// # use std::fmt;
313/// #
314/// # use serde::de::{self, Unexpected, Visitor};
315/// #
316/// # struct Example;
317/// #
318/// # impl<'de> Visitor<'de> for Example {
319/// # type Value = ();
320/// #
321/// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
322/// # write!(formatter, "definitely not a boolean")
323/// # }
324/// #
325/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
326/// where
327/// E: de::Error,
328/// {
329/// Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
330/// }
331/// # }
332/// ```
333#[derive(Copy, Clone, PartialEq, Debug)]
334pub enum Unexpected<'a> {
335 /// The input contained a boolean value that was not expected.
336 Bool(bool),
337
338 /// The input contained an unsigned integer `u8`, `u16`, `u32` or `u64` that
339 /// was not expected.
340 Unsigned(u64),
341
342 /// The input contained a signed integer `i8`, `i16`, `i32` or `i64` that
343 /// was not expected.
344 Signed(i64),
345
346 /// The input contained a floating point `f32` or `f64` that was not
347 /// expected.
348 Float(f64),
349
350 /// The input contained a `char` that was not expected.
351 Char(char),
352
353 /// The input contained a `&str` or `String` that was not expected.
354 Str(&'a str),
355
356 /// The input contained a `&[u8]` or `Vec<u8>` that was not expected.
357 Bytes(&'a [u8]),
358
359 /// The input contained a unit `()` that was not expected.
360 Unit,
361
362 /// The input contained an `Option<T>` that was not expected.
363 Option,
364
365 /// The input contained a newtype struct that was not expected.
366 NewtypeStruct,
367
368 /// The input contained a sequence that was not expected.
369 Seq,
370
371 /// The input contained a map that was not expected.
372 Map,
373
374 /// The input contained an enum that was not expected.
375 Enum,
376
377 /// The input contained a unit variant that was not expected.
378 UnitVariant,
379
380 /// The input contained a newtype variant that was not expected.
381 NewtypeVariant,
382
383 /// The input contained a tuple variant that was not expected.
384 TupleVariant,
385
386 /// The input contained a struct variant that was not expected.
387 StructVariant,
388
389 /// A message stating what uncategorized thing the input contained that was
390 /// not expected.
391 ///
392 /// The message should be a noun or noun phrase, not capitalized and without
393 /// a period. An example message is "unoriginal superhero".
394 Other(&'a str),
395}
396
397impl<'a> fmt::Display for Unexpected<'a> {
398 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
399 use self::Unexpected::*;
400 match *self {
401 Bool(b) => write!(formatter, "boolean `{}`", b),
402 Unsigned(i) => write!(formatter, "integer `{}`", i),
403 Signed(i) => write!(formatter, "integer `{}`", i),
404 Float(f) => write!(formatter, "floating point `{}`", WithDecimalPoint(f)),
405 Char(c) => write!(formatter, "character `{}`", c),
406 Str(s) => write!(formatter, "string {:?}", s),
407 Bytes(_) => formatter.write_str("byte array"),
408 Unit => formatter.write_str("unit value"),
409 Option => formatter.write_str("Option value"),
410 NewtypeStruct => formatter.write_str("newtype struct"),
411 Seq => formatter.write_str("sequence"),
412 Map => formatter.write_str("map"),
413 Enum => formatter.write_str("enum"),
414 UnitVariant => formatter.write_str("unit variant"),
415 NewtypeVariant => formatter.write_str("newtype variant"),
416 TupleVariant => formatter.write_str("tuple variant"),
417 StructVariant => formatter.write_str("struct variant"),
418 Other(other) => formatter.write_str(other),
419 }
420 }
421}
422
423/// `Expected` represents an explanation of what data a `Visitor` was expecting
424/// to receive.
425///
426/// This is used as an argument to the `invalid_type`, `invalid_value`, and
427/// `invalid_length` methods of the `Error` trait to build error messages. The
428/// message should be a noun or noun phrase that completes the sentence "This
429/// Visitor expects to receive ...", for example the message could be "an
430/// integer between 0 and 64". The message should not be capitalized and should
431/// not end with a period.
432///
433/// Within the context of a `Visitor` implementation, the `Visitor` itself
434/// (`&self`) is an implementation of this trait.
435///
436/// ```edition2021
437/// # use serde::de::{self, Unexpected, Visitor};
438/// # use std::fmt;
439/// #
440/// # struct Example;
441/// #
442/// # impl<'de> Visitor<'de> for Example {
443/// # type Value = ();
444/// #
445/// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
446/// # write!(formatter, "definitely not a boolean")
447/// # }
448/// #
449/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
450/// where
451/// E: de::Error,
452/// {
453/// Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
454/// }
455/// # }
456/// ```
457///
458/// Outside of a `Visitor`, `&"..."` can be used.
459///
460/// ```edition2021
461/// # use serde::de::{self, Unexpected};
462/// #
463/// # fn example<E>() -> Result<(), E>
464/// # where
465/// # E: de::Error,
466/// # {
467/// # let v = true;
468/// return Err(de::Error::invalid_type(
469/// Unexpected::Bool(v),
470/// &"a negative integer",
471/// ));
472/// # }
473/// ```
474pub trait Expected {
475 /// Format an explanation of what data was being expected. Same signature as
476 /// the `Display` and `Debug` traits.
477 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
478}
479
480impl<'de, T> Expected for T
481where
482 T: Visitor<'de>,
483{
484 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
485 self.expecting(formatter)
486 }
487}
488
489impl Expected for &str {
490 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
491 formatter.write_str(self)
492 }
493}
494
495impl Display for Expected + '_ {
496 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
497 Expected::fmt(self, formatter)
498 }
499}
500
501////////////////////////////////////////////////////////////////////////////////
502
503/// A **data structure** that can be deserialized from any data format supported
504/// by Serde.
505///
506/// Serde provides `Deserialize` implementations for many Rust primitive and
507/// standard library types. The complete list is [here][crate::de]. All of these
508/// can be deserialized using Serde out of the box.
509///
510/// Additionally, Serde provides a procedural macro called `serde_derive` to
511/// automatically generate `Deserialize` implementations for structs and enums
512/// in your program. See the [derive section of the manual][derive] for how to
513/// use this.
514///
515/// In rare cases it may be necessary to implement `Deserialize` manually for
516/// some type in your program. See the [Implementing
517/// `Deserialize`][impl-deserialize] section of the manual for more about this.
518///
519/// Third-party crates may provide `Deserialize` implementations for types that
520/// they expose. For example the `linked-hash-map` crate provides a
521/// `LinkedHashMap<K, V>` type that is deserializable by Serde because the crate
522/// provides an implementation of `Deserialize` for it.
523///
524/// [derive]: https://serde.rs/derive.html
525/// [impl-deserialize]: https://serde.rs/impl-deserialize.html
526///
527/// # Lifetime
528///
529/// The `'de` lifetime of this trait is the lifetime of data that may be
530/// borrowed by `Self` when deserialized. See the page [Understanding
531/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
532///
533/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
534#[cfg_attr(
535 not(no_diagnostic_namespace),
536 diagnostic::on_unimplemented(
537 note = "for local types consider adding `#[derive(serde::Deserialize)]` to your `{Self}` type",
538 note = "for types from other crates check whether the crate offers a `serde` feature flag",
539 )
540)]
541pub trait Deserialize<'de>: Sized {
542 /// Deserialize this value from the given Serde deserializer.
543 ///
544 /// See the [Implementing `Deserialize`][impl-deserialize] section of the
545 /// manual for more information about how to implement this method.
546 ///
547 /// [impl-deserialize]: https://serde.rs/impl-deserialize.html
548 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
549 where
550 D: Deserializer<'de>;
551
552 /// Deserializes a value into `self` from the given Deserializer.
553 ///
554 /// The purpose of this method is to allow the deserializer to reuse
555 /// resources and avoid copies. As such, if this method returns an error,
556 /// `self` will be in an indeterminate state where some parts of the struct
557 /// have been overwritten. Although whatever state that is will be
558 /// memory-safe.
559 ///
560 /// This is generally useful when repeatedly deserializing values that
561 /// are processed one at a time, where the value of `self` doesn't matter
562 /// when the next deserialization occurs.
563 ///
564 /// If you manually implement this, your recursive deserializations should
565 /// use `deserialize_in_place`.
566 ///
567 /// This method is stable and an official public API, but hidden from the
568 /// documentation because it is almost never what newbies are looking for.
569 /// Showing it in rustdoc would cause it to be featured more prominently
570 /// than it deserves.
571 #[doc(hidden)]
572 fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error>
573 where
574 D: Deserializer<'de>,
575 {
576 // Default implementation just delegates to `deserialize` impl.
577 *place = tri!(Deserialize::deserialize(deserializer));
578 Ok(())
579 }
580}
581
582/// A data structure that can be deserialized without borrowing any data from
583/// the deserializer.
584///
585/// This is primarily useful for trait bounds on functions. For example a
586/// `from_str` function may be able to deserialize a data structure that borrows
587/// from the input string, but a `from_reader` function may only deserialize
588/// owned data.
589///
590/// ```edition2021
591/// # use serde::de::{Deserialize, DeserializeOwned};
592/// # use std::io::{Read, Result};
593/// #
594/// # trait Ignore {
595/// fn from_str<'a, T>(s: &'a str) -> Result<T>
596/// where
597/// T: Deserialize<'a>;
598///
599/// fn from_reader<R, T>(rdr: R) -> Result<T>
600/// where
601/// R: Read,
602/// T: DeserializeOwned;
603/// # }
604/// ```
605///
606/// # Lifetime
607///
608/// The relationship between `Deserialize` and `DeserializeOwned` in trait
609/// bounds is explained in more detail on the page [Understanding deserializer
610/// lifetimes].
611///
612/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
613pub trait DeserializeOwned: for<'de> Deserialize<'de> {}
614impl<T> DeserializeOwned for T where T: for<'de> Deserialize<'de> {}
615
616/// `DeserializeSeed` is the stateful form of the `Deserialize` trait. If you
617/// ever find yourself looking for a way to pass data into a `Deserialize` impl,
618/// this trait is the way to do it.
619///
620/// As one example of stateful deserialization consider deserializing a JSON
621/// array into an existing buffer. Using the `Deserialize` trait we could
622/// deserialize a JSON array into a `Vec<T>` but it would be a freshly allocated
623/// `Vec<T>`; there is no way for `Deserialize` to reuse a previously allocated
624/// buffer. Using `DeserializeSeed` instead makes this possible as in the
625/// example code below.
626///
627/// The canonical API for stateless deserialization looks like this:
628///
629/// ```edition2021
630/// # use serde::Deserialize;
631/// #
632/// # enum Error {}
633/// #
634/// fn func<'de, T: Deserialize<'de>>() -> Result<T, Error>
635/// # {
636/// # unimplemented!()
637/// # }
638/// ```
639///
640/// Adjusting an API like this to support stateful deserialization is a matter
641/// of accepting a seed as input:
642///
643/// ```edition2021
644/// # use serde::de::DeserializeSeed;
645/// #
646/// # enum Error {}
647/// #
648/// fn func_seed<'de, T: DeserializeSeed<'de>>(seed: T) -> Result<T::Value, Error>
649/// # {
650/// # let _ = seed;
651/// # unimplemented!()
652/// # }
653/// ```
654///
655/// In practice the majority of deserialization is stateless. An API expecting a
656/// seed can be appeased by passing `std::marker::PhantomData` as a seed in the
657/// case of stateless deserialization.
658///
659/// # Lifetime
660///
661/// The `'de` lifetime of this trait is the lifetime of data that may be
662/// borrowed by `Self::Value` when deserialized. See the page [Understanding
663/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
664///
665/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
666///
667/// # Example
668///
669/// Suppose we have JSON that looks like `[[1, 2], [3, 4, 5], [6]]` and we need
670/// to deserialize it into a flat representation like `vec![1, 2, 3, 4, 5, 6]`.
671/// Allocating a brand new `Vec<T>` for each subarray would be slow. Instead we
672/// would like to allocate a single `Vec<T>` and then deserialize each subarray
673/// into it. This requires stateful deserialization using the `DeserializeSeed`
674/// trait.
675///
676/// ```edition2021
677/// use serde::de::{Deserialize, DeserializeSeed, Deserializer, SeqAccess, Visitor};
678/// use std::fmt;
679/// use std::marker::PhantomData;
680///
681/// // A DeserializeSeed implementation that uses stateful deserialization to
682/// // append array elements onto the end of an existing vector. The preexisting
683/// // state ("seed") in this case is the Vec<T>. The `deserialize` method of
684/// // `ExtendVec` will be traversing the inner arrays of the JSON input and
685/// // appending each integer into the existing Vec.
686/// struct ExtendVec<'a, T: 'a>(&'a mut Vec<T>);
687///
688/// impl<'de, 'a, T> DeserializeSeed<'de> for ExtendVec<'a, T>
689/// where
690/// T: Deserialize<'de>,
691/// {
692/// // The return type of the `deserialize` method. This implementation
693/// // appends onto an existing vector but does not create any new data
694/// // structure, so the return type is ().
695/// type Value = ();
696///
697/// fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
698/// where
699/// D: Deserializer<'de>,
700/// {
701/// // Visitor implementation that will walk an inner array of the JSON
702/// // input.
703/// struct ExtendVecVisitor<'a, T: 'a>(&'a mut Vec<T>);
704///
705/// impl<'de, 'a, T> Visitor<'de> for ExtendVecVisitor<'a, T>
706/// where
707/// T: Deserialize<'de>,
708/// {
709/// type Value = ();
710///
711/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
712/// write!(formatter, "an array of integers")
713/// }
714///
715/// fn visit_seq<A>(self, mut seq: A) -> Result<(), A::Error>
716/// where
717/// A: SeqAccess<'de>,
718/// {
719/// // Decrease the number of reallocations if there are many elements
720/// if let Some(size_hint) = seq.size_hint() {
721/// self.0.reserve(size_hint);
722/// }
723///
724/// // Visit each element in the inner array and push it onto
725/// // the existing vector.
726/// while let Some(elem) = seq.next_element()? {
727/// self.0.push(elem);
728/// }
729/// Ok(())
730/// }
731/// }
732///
733/// deserializer.deserialize_seq(ExtendVecVisitor(self.0))
734/// }
735/// }
736///
737/// // Visitor implementation that will walk the outer array of the JSON input.
738/// struct FlattenedVecVisitor<T>(PhantomData<T>);
739///
740/// impl<'de, T> Visitor<'de> for FlattenedVecVisitor<T>
741/// where
742/// T: Deserialize<'de>,
743/// {
744/// // This Visitor constructs a single Vec<T> to hold the flattened
745/// // contents of the inner arrays.
746/// type Value = Vec<T>;
747///
748/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
749/// write!(formatter, "an array of arrays")
750/// }
751///
752/// fn visit_seq<A>(self, mut seq: A) -> Result<Vec<T>, A::Error>
753/// where
754/// A: SeqAccess<'de>,
755/// {
756/// // Create a single Vec to hold the flattened contents.
757/// let mut vec = Vec::new();
758///
759/// // Each iteration through this loop is one inner array.
760/// while let Some(()) = seq.next_element_seed(ExtendVec(&mut vec))? {
761/// // Nothing to do; inner array has been appended into `vec`.
762/// }
763///
764/// // Return the finished vec.
765/// Ok(vec)
766/// }
767/// }
768///
769/// # fn example<'de, D>(deserializer: D) -> Result<(), D::Error>
770/// # where
771/// # D: Deserializer<'de>,
772/// # {
773/// let visitor = FlattenedVecVisitor(PhantomData);
774/// let flattened: Vec<u64> = deserializer.deserialize_seq(visitor)?;
775/// # Ok(())
776/// # }
777/// ```
778pub trait DeserializeSeed<'de>: Sized {
779 /// The type produced by using this seed.
780 type Value;
781
782 /// Equivalent to the more common `Deserialize::deserialize` method, except
783 /// with some initial piece of data (the seed) passed in.
784 fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
785 where
786 D: Deserializer<'de>;
787}
788
789impl<'de, T> DeserializeSeed<'de> for PhantomData<T>
790where
791 T: Deserialize<'de>,
792{
793 type Value = T;
794
795 #[inline]
796 fn deserialize<D>(self, deserializer: D) -> Result<T, D::Error>
797 where
798 D: Deserializer<'de>,
799 {
800 T::deserialize(deserializer)
801 }
802}
803
804////////////////////////////////////////////////////////////////////////////////
805
806/// A **data format** that can deserialize any data structure supported by
807/// Serde.
808///
809/// The role of this trait is to define the deserialization half of the [Serde
810/// data model], which is a way to categorize every Rust data type into one of
811/// 29 possible types. Each method of the `Deserializer` trait corresponds to one
812/// of the types of the data model.
813///
814/// Implementations of `Deserialize` map themselves into this data model by
815/// passing to the `Deserializer` a `Visitor` implementation that can receive
816/// these various types.
817///
818/// The types that make up the Serde data model are:
819///
820/// - **14 primitive types**
821/// - bool
822/// - i8, i16, i32, i64, i128
823/// - u8, u16, u32, u64, u128
824/// - f32, f64
825/// - char
826/// - **string**
827/// - UTF-8 bytes with a length and no null terminator.
828/// - When serializing, all strings are handled equally. When deserializing,
829/// there are three flavors of strings: transient, owned, and borrowed.
830/// - **byte array** - \[u8\]
831/// - Similar to strings, during deserialization byte arrays can be
832/// transient, owned, or borrowed.
833/// - **option**
834/// - Either none or some value.
835/// - **unit**
836/// - The type of `()` in Rust. It represents an anonymous value containing
837/// no data.
838/// - **unit_struct**
839/// - For example `struct Unit` or `PhantomData<T>`. It represents a named
840/// value containing no data.
841/// - **unit_variant**
842/// - For example the `E::A` and `E::B` in `enum E { A, B }`.
843/// - **newtype_struct**
844/// - For example `struct Millimeters(u8)`.
845/// - **newtype_variant**
846/// - For example the `E::N` in `enum E { N(u8) }`.
847/// - **seq**
848/// - A variably sized heterogeneous sequence of values, for example `Vec<T>`
849/// or `HashSet<T>`. When serializing, the length may or may not be known
850/// before iterating through all the data. When deserializing, the length
851/// is determined by looking at the serialized data.
852/// - **tuple**
853/// - A statically sized heterogeneous sequence of values for which the
854/// length will be known at deserialization time without looking at the
855/// serialized data, for example `(u8,)` or `(String, u64, Vec<T>)` or
856/// `[u64; 10]`.
857/// - **tuple_struct**
858/// - A named tuple, for example `struct Rgb(u8, u8, u8)`.
859/// - **tuple_variant**
860/// - For example the `E::T` in `enum E { T(u8, u8) }`.
861/// - **map**
862/// - A heterogeneous key-value pairing, for example `BTreeMap<K, V>`.
863/// - **struct**
864/// - A heterogeneous key-value pairing in which the keys are strings and
865/// will be known at deserialization time without looking at the serialized
866/// data, for example `struct S { r: u8, g: u8, b: u8 }`.
867/// - **struct_variant**
868/// - For example the `E::S` in `enum E { S { r: u8, g: u8, b: u8 } }`.
869///
870/// The `Deserializer` trait supports two entry point styles which enables
871/// different kinds of deserialization.
872///
873/// 1. The `deserialize_any` method. Self-describing data formats like JSON are
874/// able to look at the serialized data and tell what it represents. For
875/// example the JSON deserializer may see an opening curly brace (`{`) and
876/// know that it is seeing a map. If the data format supports
877/// `Deserializer::deserialize_any`, it will drive the Visitor using whatever
878/// type it sees in the input. JSON uses this approach when deserializing
879/// `serde_json::Value` which is an enum that can represent any JSON
880/// document. Without knowing what is in a JSON document, we can deserialize
881/// it to `serde_json::Value` by going through
882/// `Deserializer::deserialize_any`.
883///
884/// 2. The various `deserialize_*` methods. Non-self-describing formats like
885/// Postcard need to be told what is in the input in order to deserialize it.
886/// The `deserialize_*` methods are hints to the deserializer for how to
887/// interpret the next piece of input. Non-self-describing formats are not
888/// able to deserialize something like `serde_json::Value` which relies on
889/// `Deserializer::deserialize_any`.
890///
891/// When implementing `Deserialize`, you should avoid relying on
892/// `Deserializer::deserialize_any` unless you need to be told by the
893/// Deserializer what type is in the input. Know that relying on
894/// `Deserializer::deserialize_any` means your data type will be able to
895/// deserialize from self-describing formats only, ruling out Postcard and many
896/// others.
897///
898/// [Serde data model]: https://serde.rs/data-model.html
899///
900/// # Lifetime
901///
902/// The `'de` lifetime of this trait is the lifetime of data that may be
903/// borrowed from the input when deserializing. See the page [Understanding
904/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
905///
906/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
907///
908/// # Example implementation
909///
910/// The [example data format] presented on the website contains example code for
911/// a basic JSON `Deserializer`.
912///
913/// [example data format]: https://serde.rs/data-format.html
914pub trait Deserializer<'de>: Sized {
915 /// The error type that can be returned if some error occurs during
916 /// deserialization.
917 type Error: Error;
918
919 /// Require the `Deserializer` to figure out how to drive the visitor based
920 /// on what data type is in the input.
921 ///
922 /// When implementing `Deserialize`, you should avoid relying on
923 /// `Deserializer::deserialize_any` unless you need to be told by the
924 /// Deserializer what type is in the input. Know that relying on
925 /// `Deserializer::deserialize_any` means your data type will be able to
926 /// deserialize from self-describing formats only, ruling out Postcard and
927 /// many others.
928 fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
929 where
930 V: Visitor<'de>;
931
932 /// Hint that the `Deserialize` type is expecting a `bool` value.
933 fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error>
934 where
935 V: Visitor<'de>;
936
937 /// Hint that the `Deserialize` type is expecting an `i8` value.
938 fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
939 where
940 V: Visitor<'de>;
941
942 /// Hint that the `Deserialize` type is expecting an `i16` value.
943 fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
944 where
945 V: Visitor<'de>;
946
947 /// Hint that the `Deserialize` type is expecting an `i32` value.
948 fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
949 where
950 V: Visitor<'de>;
951
952 /// Hint that the `Deserialize` type is expecting an `i64` value.
953 fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
954 where
955 V: Visitor<'de>;
956
957 /// Hint that the `Deserialize` type is expecting an `i128` value.
958 ///
959 /// The default behavior unconditionally returns an error.
960 fn deserialize_i128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
961 where
962 V: Visitor<'de>,
963 {
964 let _ = visitor;
965 Err(Error::custom("i128 is not supported"))
966 }
967
968 /// Hint that the `Deserialize` type is expecting a `u8` value.
969 fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
970 where
971 V: Visitor<'de>;
972
973 /// Hint that the `Deserialize` type is expecting a `u16` value.
974 fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
975 where
976 V: Visitor<'de>;
977
978 /// Hint that the `Deserialize` type is expecting a `u32` value.
979 fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
980 where
981 V: Visitor<'de>;
982
983 /// Hint that the `Deserialize` type is expecting a `u64` value.
984 fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
985 where
986 V: Visitor<'de>;
987
988 /// Hint that the `Deserialize` type is expecting an `u128` value.
989 ///
990 /// The default behavior unconditionally returns an error.
991 fn deserialize_u128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
992 where
993 V: Visitor<'de>,
994 {
995 let _ = visitor;
996 Err(Error::custom("u128 is not supported"))
997 }
998
999 /// Hint that the `Deserialize` type is expecting a `f32` value.
1000 fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1001 where
1002 V: Visitor<'de>;
1003
1004 /// Hint that the `Deserialize` type is expecting a `f64` value.
1005 fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1006 where
1007 V: Visitor<'de>;
1008
1009 /// Hint that the `Deserialize` type is expecting a `char` value.
1010 fn deserialize_char<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1011 where
1012 V: Visitor<'de>;
1013
1014 /// Hint that the `Deserialize` type is expecting a string value and does
1015 /// not benefit from taking ownership of buffered data owned by the
1016 /// `Deserializer`.
1017 ///
1018 /// If the `Visitor` would benefit from taking ownership of `String` data,
1019 /// indicate this to the `Deserializer` by using `deserialize_string`
1020 /// instead.
1021 fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1022 where
1023 V: Visitor<'de>;
1024
1025 /// Hint that the `Deserialize` type is expecting a string value and would
1026 /// benefit from taking ownership of buffered data owned by the
1027 /// `Deserializer`.
1028 ///
1029 /// If the `Visitor` would not benefit from taking ownership of `String`
1030 /// data, indicate that to the `Deserializer` by using `deserialize_str`
1031 /// instead.
1032 fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1033 where
1034 V: Visitor<'de>;
1035
1036 /// Hint that the `Deserialize` type is expecting a byte array and does not
1037 /// benefit from taking ownership of buffered data owned by the
1038 /// `Deserializer`.
1039 ///
1040 /// If the `Visitor` would benefit from taking ownership of `Vec<u8>` data,
1041 /// indicate this to the `Deserializer` by using `deserialize_byte_buf`
1042 /// instead.
1043 fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1044 where
1045 V: Visitor<'de>;
1046
1047 /// Hint that the `Deserialize` type is expecting a byte array and would
1048 /// benefit from taking ownership of buffered data owned by the
1049 /// `Deserializer`.
1050 ///
1051 /// If the `Visitor` would not benefit from taking ownership of `Vec<u8>`
1052 /// data, indicate that to the `Deserializer` by using `deserialize_bytes`
1053 /// instead.
1054 fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1055 where
1056 V: Visitor<'de>;
1057
1058 /// Hint that the `Deserialize` type is expecting an optional value.
1059 ///
1060 /// This allows deserializers that encode an optional value as a nullable
1061 /// value to convert the null value into `None` and a regular value into
1062 /// `Some(value)`.
1063 fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1064 where
1065 V: Visitor<'de>;
1066
1067 /// Hint that the `Deserialize` type is expecting a unit value.
1068 fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1069 where
1070 V: Visitor<'de>;
1071
1072 /// Hint that the `Deserialize` type is expecting a unit struct with a
1073 /// particular name.
1074 fn deserialize_unit_struct<V>(
1075 self,
1076 name: &'static str,
1077 visitor: V,
1078 ) -> Result<V::Value, Self::Error>
1079 where
1080 V: Visitor<'de>;
1081
1082 /// Hint that the `Deserialize` type is expecting a newtype struct with a
1083 /// particular name.
1084 fn deserialize_newtype_struct<V>(
1085 self,
1086 name: &'static str,
1087 visitor: V,
1088 ) -> Result<V::Value, Self::Error>
1089 where
1090 V: Visitor<'de>;
1091
1092 /// Hint that the `Deserialize` type is expecting a sequence of values.
1093 fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1094 where
1095 V: Visitor<'de>;
1096
1097 /// Hint that the `Deserialize` type is expecting a sequence of values and
1098 /// knows how many values there are without looking at the serialized data.
1099 fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
1100 where
1101 V: Visitor<'de>;
1102
1103 /// Hint that the `Deserialize` type is expecting a tuple struct with a
1104 /// particular name and number of fields.
1105 fn deserialize_tuple_struct<V>(
1106 self,
1107 name: &'static str,
1108 len: usize,
1109 visitor: V,
1110 ) -> Result<V::Value, Self::Error>
1111 where
1112 V: Visitor<'de>;
1113
1114 /// Hint that the `Deserialize` type is expecting a map of key-value pairs.
1115 fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1116 where
1117 V: Visitor<'de>;
1118
1119 /// Hint that the `Deserialize` type is expecting a struct with a particular
1120 /// name and fields.
1121 fn deserialize_struct<V>(
1122 self,
1123 name: &'static str,
1124 fields: &'static [&'static str],
1125 visitor: V,
1126 ) -> Result<V::Value, Self::Error>
1127 where
1128 V: Visitor<'de>;
1129
1130 /// Hint that the `Deserialize` type is expecting an enum value with a
1131 /// particular name and possible variants.
1132 fn deserialize_enum<V>(
1133 self,
1134 name: &'static str,
1135 variants: &'static [&'static str],
1136 visitor: V,
1137 ) -> Result<V::Value, Self::Error>
1138 where
1139 V: Visitor<'de>;
1140
1141 /// Hint that the `Deserialize` type is expecting the name of a struct
1142 /// field or the discriminant of an enum variant.
1143 fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1144 where
1145 V: Visitor<'de>;
1146
1147 /// Hint that the `Deserialize` type needs to deserialize a value whose type
1148 /// doesn't matter because it is ignored.
1149 ///
1150 /// Deserializers for non-self-describing formats may not support this mode.
1151 fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1152 where
1153 V: Visitor<'de>;
1154
1155 /// Determine whether `Deserialize` implementations should expect to
1156 /// deserialize their human-readable form.
1157 ///
1158 /// Some types have a human-readable form that may be somewhat expensive to
1159 /// construct, as well as a binary form that is compact and efficient.
1160 /// Generally text-based formats like JSON and YAML will prefer to use the
1161 /// human-readable one and binary formats like Postcard will prefer the
1162 /// compact one.
1163 ///
1164 /// ```edition2021
1165 /// # use std::ops::Add;
1166 /// # use std::str::FromStr;
1167 /// #
1168 /// # struct Timestamp;
1169 /// #
1170 /// # impl Timestamp {
1171 /// # const EPOCH: Timestamp = Timestamp;
1172 /// # }
1173 /// #
1174 /// # impl FromStr for Timestamp {
1175 /// # type Err = String;
1176 /// # fn from_str(_: &str) -> Result<Self, Self::Err> {
1177 /// # unimplemented!()
1178 /// # }
1179 /// # }
1180 /// #
1181 /// # struct Duration;
1182 /// #
1183 /// # impl Duration {
1184 /// # fn seconds(_: u64) -> Self { unimplemented!() }
1185 /// # }
1186 /// #
1187 /// # impl Add<Duration> for Timestamp {
1188 /// # type Output = Timestamp;
1189 /// # fn add(self, _: Duration) -> Self::Output {
1190 /// # unimplemented!()
1191 /// # }
1192 /// # }
1193 /// #
1194 /// use serde::de::{self, Deserialize, Deserializer};
1195 ///
1196 /// impl<'de> Deserialize<'de> for Timestamp {
1197 /// fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1198 /// where
1199 /// D: Deserializer<'de>,
1200 /// {
1201 /// if deserializer.is_human_readable() {
1202 /// // Deserialize from a human-readable string like "2015-05-15T17:01:00Z".
1203 /// let s = String::deserialize(deserializer)?;
1204 /// Timestamp::from_str(&s).map_err(de::Error::custom)
1205 /// } else {
1206 /// // Deserialize from a compact binary representation, seconds since
1207 /// // the Unix epoch.
1208 /// let n = u64::deserialize(deserializer)?;
1209 /// Ok(Timestamp::EPOCH + Duration::seconds(n))
1210 /// }
1211 /// }
1212 /// }
1213 /// ```
1214 ///
1215 /// The default implementation of this method returns `true`. Data formats
1216 /// may override this to `false` to request a compact form for types that
1217 /// support one. Note that modifying this method to change a format from
1218 /// human-readable to compact or vice versa should be regarded as a breaking
1219 /// change, as a value serialized in human-readable mode is not required to
1220 /// deserialize from the same data in compact mode.
1221 #[inline]
1222 fn is_human_readable(&self) -> bool {
1223 true
1224 }
1225
1226 // Not public API.
1227 #[cfg(all(not(no_serde_derive), any(feature = "std", feature = "alloc")))]
1228 #[doc(hidden)]
1229 fn __deserialize_content<V>(
1230 self,
1231 _: crate::actually_private::T,
1232 visitor: V,
1233 ) -> Result<crate::__private::de::Content<'de>, Self::Error>
1234 where
1235 V: Visitor<'de, Value = crate::__private::de::Content<'de>>,
1236 {
1237 self.deserialize_any(visitor)
1238 }
1239}
1240
1241////////////////////////////////////////////////////////////////////////////////
1242
1243/// This trait represents a visitor that walks through a deserializer.
1244///
1245/// # Lifetime
1246///
1247/// The `'de` lifetime of this trait is the requirement for lifetime of data
1248/// that may be borrowed by `Self::Value`. See the page [Understanding
1249/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1250///
1251/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1252///
1253/// # Example
1254///
1255/// ```edition2021
1256/// # use serde::de::{self, Unexpected, Visitor};
1257/// # use std::fmt;
1258/// #
1259/// /// A visitor that deserializes a long string - a string containing at least
1260/// /// some minimum number of bytes.
1261/// struct LongString {
1262/// min: usize,
1263/// }
1264///
1265/// impl<'de> Visitor<'de> for LongString {
1266/// type Value = String;
1267///
1268/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1269/// write!(formatter, "a string containing at least {} bytes", self.min)
1270/// }
1271///
1272/// fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
1273/// where
1274/// E: de::Error,
1275/// {
1276/// if s.len() >= self.min {
1277/// Ok(s.to_owned())
1278/// } else {
1279/// Err(de::Error::invalid_value(Unexpected::Str(s), &self))
1280/// }
1281/// }
1282/// }
1283/// ```
1284pub trait Visitor<'de>: Sized {
1285 /// The value produced by this visitor.
1286 type Value;
1287
1288 /// Format a message stating what data this Visitor expects to receive.
1289 ///
1290 /// This is used in error messages. The message should complete the sentence
1291 /// "This Visitor expects to receive ...", for example the message could be
1292 /// "an integer between 0 and 64". The message should not be capitalized and
1293 /// should not end with a period.
1294 ///
1295 /// ```edition2021
1296 /// # use std::fmt;
1297 /// #
1298 /// # struct S {
1299 /// # max: usize,
1300 /// # }
1301 /// #
1302 /// # impl<'de> serde::de::Visitor<'de> for S {
1303 /// # type Value = ();
1304 /// #
1305 /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1306 /// write!(formatter, "an integer between 0 and {}", self.max)
1307 /// }
1308 /// # }
1309 /// ```
1310 fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
1311
1312 /// The input contains a boolean.
1313 ///
1314 /// The default implementation fails with a type error.
1315 fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
1316 where
1317 E: Error,
1318 {
1319 Err(Error::invalid_type(Unexpected::Bool(v), &self))
1320 }
1321
1322 /// The input contains an `i8`.
1323 ///
1324 /// The default implementation forwards to [`visit_i64`].
1325 ///
1326 /// [`visit_i64`]: #method.visit_i64
1327 fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>
1328 where
1329 E: Error,
1330 {
1331 self.visit_i64(v as i64)
1332 }
1333
1334 /// The input contains an `i16`.
1335 ///
1336 /// The default implementation forwards to [`visit_i64`].
1337 ///
1338 /// [`visit_i64`]: #method.visit_i64
1339 fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>
1340 where
1341 E: Error,
1342 {
1343 self.visit_i64(v as i64)
1344 }
1345
1346 /// The input contains an `i32`.
1347 ///
1348 /// The default implementation forwards to [`visit_i64`].
1349 ///
1350 /// [`visit_i64`]: #method.visit_i64
1351 fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>
1352 where
1353 E: Error,
1354 {
1355 self.visit_i64(v as i64)
1356 }
1357
1358 /// The input contains an `i64`.
1359 ///
1360 /// The default implementation fails with a type error.
1361 fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>
1362 where
1363 E: Error,
1364 {
1365 Err(Error::invalid_type(Unexpected::Signed(v), &self))
1366 }
1367
1368 /// The input contains a `i128`.
1369 ///
1370 /// The default implementation fails with a type error.
1371 fn visit_i128<E>(self, v: i128) -> Result<Self::Value, E>
1372 where
1373 E: Error,
1374 {
1375 let mut buf = [0u8; 58];
1376 let mut writer = crate::format::Buf::new(&mut buf);
1377 fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as i128", v)).unwrap();
1378 Err(Error::invalid_type(
1379 Unexpected::Other(writer.as_str()),
1380 &self,
1381 ))
1382 }
1383
1384 /// The input contains a `u8`.
1385 ///
1386 /// The default implementation forwards to [`visit_u64`].
1387 ///
1388 /// [`visit_u64`]: #method.visit_u64
1389 fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>
1390 where
1391 E: Error,
1392 {
1393 self.visit_u64(v as u64)
1394 }
1395
1396 /// The input contains a `u16`.
1397 ///
1398 /// The default implementation forwards to [`visit_u64`].
1399 ///
1400 /// [`visit_u64`]: #method.visit_u64
1401 fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>
1402 where
1403 E: Error,
1404 {
1405 self.visit_u64(v as u64)
1406 }
1407
1408 /// The input contains a `u32`.
1409 ///
1410 /// The default implementation forwards to [`visit_u64`].
1411 ///
1412 /// [`visit_u64`]: #method.visit_u64
1413 fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>
1414 where
1415 E: Error,
1416 {
1417 self.visit_u64(v as u64)
1418 }
1419
1420 /// The input contains a `u64`.
1421 ///
1422 /// The default implementation fails with a type error.
1423 fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
1424 where
1425 E: Error,
1426 {
1427 Err(Error::invalid_type(Unexpected::Unsigned(v), &self))
1428 }
1429
1430 /// The input contains a `u128`.
1431 ///
1432 /// The default implementation fails with a type error.
1433 fn visit_u128<E>(self, v: u128) -> Result<Self::Value, E>
1434 where
1435 E: Error,
1436 {
1437 let mut buf = [0u8; 57];
1438 let mut writer = crate::format::Buf::new(&mut buf);
1439 fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as u128", v)).unwrap();
1440 Err(Error::invalid_type(
1441 Unexpected::Other(writer.as_str()),
1442 &self,
1443 ))
1444 }
1445
1446 /// The input contains an `f32`.
1447 ///
1448 /// The default implementation forwards to [`visit_f64`].
1449 ///
1450 /// [`visit_f64`]: #method.visit_f64
1451 fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1452 where
1453 E: Error,
1454 {
1455 self.visit_f64(v as f64)
1456 }
1457
1458 /// The input contains an `f64`.
1459 ///
1460 /// The default implementation fails with a type error.
1461 fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1462 where
1463 E: Error,
1464 {
1465 Err(Error::invalid_type(Unexpected::Float(v), &self))
1466 }
1467
1468 /// The input contains a `char`.
1469 ///
1470 /// The default implementation forwards to [`visit_str`] as a one-character
1471 /// string.
1472 ///
1473 /// [`visit_str`]: #method.visit_str
1474 #[inline]
1475 fn visit_char<E>(self, v: char) -> Result<Self::Value, E>
1476 where
1477 E: Error,
1478 {
1479 self.visit_str(v.encode_utf8(&mut [0u8; 4]))
1480 }
1481
1482 /// The input contains a string. The lifetime of the string is ephemeral and
1483 /// it may be destroyed after this method returns.
1484 ///
1485 /// This method allows the `Deserializer` to avoid a copy by retaining
1486 /// ownership of any buffered data. `Deserialize` implementations that do
1487 /// not benefit from taking ownership of `String` data should indicate that
1488 /// to the deserializer by using `Deserializer::deserialize_str` rather than
1489 /// `Deserializer::deserialize_string`.
1490 ///
1491 /// It is never correct to implement `visit_string` without implementing
1492 /// `visit_str`. Implement neither, both, or just `visit_str`.
1493 fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1494 where
1495 E: Error,
1496 {
1497 Err(Error::invalid_type(Unexpected::Str(v), &self))
1498 }
1499
1500 /// The input contains a string that lives at least as long as the
1501 /// `Deserializer`.
1502 ///
1503 /// This enables zero-copy deserialization of strings in some formats. For
1504 /// example JSON input containing the JSON string `"borrowed"` can be
1505 /// deserialized with zero copying into a `&'a str` as long as the input
1506 /// data outlives `'a`.
1507 ///
1508 /// The default implementation forwards to `visit_str`.
1509 #[inline]
1510 fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E>
1511 where
1512 E: Error,
1513 {
1514 self.visit_str(v)
1515 }
1516
1517 /// The input contains a string and ownership of the string is being given
1518 /// to the `Visitor`.
1519 ///
1520 /// This method allows the `Visitor` to avoid a copy by taking ownership of
1521 /// a string created by the `Deserializer`. `Deserialize` implementations
1522 /// that benefit from taking ownership of `String` data should indicate that
1523 /// to the deserializer by using `Deserializer::deserialize_string` rather
1524 /// than `Deserializer::deserialize_str`, although not every deserializer
1525 /// will honor such a request.
1526 ///
1527 /// It is never correct to implement `visit_string` without implementing
1528 /// `visit_str`. Implement neither, both, or just `visit_str`.
1529 ///
1530 /// The default implementation forwards to `visit_str` and then drops the
1531 /// `String`.
1532 #[inline]
1533 #[cfg(any(feature = "std", feature = "alloc"))]
1534 #[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
1535 fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
1536 where
1537 E: Error,
1538 {
1539 self.visit_str(&v)
1540 }
1541
1542 /// The input contains a byte array. The lifetime of the byte array is
1543 /// ephemeral and it may be destroyed after this method returns.
1544 ///
1545 /// This method allows the `Deserializer` to avoid a copy by retaining
1546 /// ownership of any buffered data. `Deserialize` implementations that do
1547 /// not benefit from taking ownership of `Vec<u8>` data should indicate that
1548 /// to the deserializer by using `Deserializer::deserialize_bytes` rather
1549 /// than `Deserializer::deserialize_byte_buf`.
1550 ///
1551 /// It is never correct to implement `visit_byte_buf` without implementing
1552 /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1553 fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
1554 where
1555 E: Error,
1556 {
1557 Err(Error::invalid_type(Unexpected::Bytes(v), &self))
1558 }
1559
1560 /// The input contains a byte array that lives at least as long as the
1561 /// `Deserializer`.
1562 ///
1563 /// This enables zero-copy deserialization of bytes in some formats. For
1564 /// example Postcard data containing bytes can be deserialized with zero
1565 /// copying into a `&'a [u8]` as long as the input data outlives `'a`.
1566 ///
1567 /// The default implementation forwards to `visit_bytes`.
1568 #[inline]
1569 fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>
1570 where
1571 E: Error,
1572 {
1573 self.visit_bytes(v)
1574 }
1575
1576 /// The input contains a byte array and ownership of the byte array is being
1577 /// given to the `Visitor`.
1578 ///
1579 /// This method allows the `Visitor` to avoid a copy by taking ownership of
1580 /// a byte buffer created by the `Deserializer`. `Deserialize`
1581 /// implementations that benefit from taking ownership of `Vec<u8>` data
1582 /// should indicate that to the deserializer by using
1583 /// `Deserializer::deserialize_byte_buf` rather than
1584 /// `Deserializer::deserialize_bytes`, although not every deserializer will
1585 /// honor such a request.
1586 ///
1587 /// It is never correct to implement `visit_byte_buf` without implementing
1588 /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1589 ///
1590 /// The default implementation forwards to `visit_bytes` and then drops the
1591 /// `Vec<u8>`.
1592 #[cfg(any(feature = "std", feature = "alloc"))]
1593 #[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
1594 fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
1595 where
1596 E: Error,
1597 {
1598 self.visit_bytes(&v)
1599 }
1600
1601 /// The input contains an optional that is absent.
1602 ///
1603 /// The default implementation fails with a type error.
1604 fn visit_none<E>(self) -> Result<Self::Value, E>
1605 where
1606 E: Error,
1607 {
1608 Err(Error::invalid_type(Unexpected::Option, &self))
1609 }
1610
1611 /// The input contains an optional that is present.
1612 ///
1613 /// The default implementation fails with a type error.
1614 fn visit_some<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1615 where
1616 D: Deserializer<'de>,
1617 {
1618 let _ = deserializer;
1619 Err(Error::invalid_type(Unexpected::Option, &self))
1620 }
1621
1622 /// The input contains a unit `()`.
1623 ///
1624 /// The default implementation fails with a type error.
1625 fn visit_unit<E>(self) -> Result<Self::Value, E>
1626 where
1627 E: Error,
1628 {
1629 Err(Error::invalid_type(Unexpected::Unit, &self))
1630 }
1631
1632 /// The input contains a newtype struct.
1633 ///
1634 /// The content of the newtype struct may be read from the given
1635 /// `Deserializer`.
1636 ///
1637 /// The default implementation fails with a type error.
1638 fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1639 where
1640 D: Deserializer<'de>,
1641 {
1642 let _ = deserializer;
1643 Err(Error::invalid_type(Unexpected::NewtypeStruct, &self))
1644 }
1645
1646 /// The input contains a sequence of elements.
1647 ///
1648 /// The default implementation fails with a type error.
1649 fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
1650 where
1651 A: SeqAccess<'de>,
1652 {
1653 let _ = seq;
1654 Err(Error::invalid_type(Unexpected::Seq, &self))
1655 }
1656
1657 /// The input contains a key-value map.
1658 ///
1659 /// The default implementation fails with a type error.
1660 fn visit_map<A>(self, map: A) -> Result<Self::Value, A::Error>
1661 where
1662 A: MapAccess<'de>,
1663 {
1664 let _ = map;
1665 Err(Error::invalid_type(Unexpected::Map, &self))
1666 }
1667
1668 /// The input contains an enum.
1669 ///
1670 /// The default implementation fails with a type error.
1671 fn visit_enum<A>(self, data: A) -> Result<Self::Value, A::Error>
1672 where
1673 A: EnumAccess<'de>,
1674 {
1675 let _ = data;
1676 Err(Error::invalid_type(Unexpected::Enum, &self))
1677 }
1678
1679 // Used when deserializing a flattened Option field. Not public API.
1680 #[doc(hidden)]
1681 fn __private_visit_untagged_option<D>(self, _: D) -> Result<Self::Value, ()>
1682 where
1683 D: Deserializer<'de>,
1684 {
1685 Err(())
1686 }
1687}
1688
1689////////////////////////////////////////////////////////////////////////////////
1690
1691/// Provides a `Visitor` access to each element of a sequence in the input.
1692///
1693/// This is a trait that a `Deserializer` passes to a `Visitor` implementation,
1694/// which deserializes each item in a sequence.
1695///
1696/// # Lifetime
1697///
1698/// The `'de` lifetime of this trait is the lifetime of data that may be
1699/// borrowed by deserialized sequence elements. See the page [Understanding
1700/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1701///
1702/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1703///
1704/// # Example implementation
1705///
1706/// The [example data format] presented on the website demonstrates an
1707/// implementation of `SeqAccess` for a basic JSON data format.
1708///
1709/// [example data format]: https://serde.rs/data-format.html
1710pub trait SeqAccess<'de> {
1711 /// The error type that can be returned if some error occurs during
1712 /// deserialization.
1713 type Error: Error;
1714
1715 /// This returns `Ok(Some(value))` for the next value in the sequence, or
1716 /// `Ok(None)` if there are no more remaining items.
1717 ///
1718 /// `Deserialize` implementations should typically use
1719 /// `SeqAccess::next_element` instead.
1720 fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1721 where
1722 T: DeserializeSeed<'de>;
1723
1724 /// This returns `Ok(Some(value))` for the next value in the sequence, or
1725 /// `Ok(None)` if there are no more remaining items.
1726 ///
1727 /// This method exists as a convenience for `Deserialize` implementations.
1728 /// `SeqAccess` implementations should not override the default behavior.
1729 #[inline]
1730 fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1731 where
1732 T: Deserialize<'de>,
1733 {
1734 self.next_element_seed(PhantomData)
1735 }
1736
1737 /// Returns the number of elements remaining in the sequence, if known.
1738 #[inline]
1739 fn size_hint(&self) -> Option<usize> {
1740 None
1741 }
1742}
1743
1744impl<'de, A> SeqAccess<'de> for &mut A
1745where
1746 A: ?Sized + SeqAccess<'de>,
1747{
1748 type Error = A::Error;
1749
1750 #[inline]
1751 fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1752 where
1753 T: DeserializeSeed<'de>,
1754 {
1755 (**self).next_element_seed(seed)
1756 }
1757
1758 #[inline]
1759 fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1760 where
1761 T: Deserialize<'de>,
1762 {
1763 (**self).next_element()
1764 }
1765
1766 #[inline]
1767 fn size_hint(&self) -> Option<usize> {
1768 (**self).size_hint()
1769 }
1770}
1771
1772////////////////////////////////////////////////////////////////////////////////
1773
1774/// Provides a `Visitor` access to each entry of a map in the input.
1775///
1776/// This is a trait that a `Deserializer` passes to a `Visitor` implementation.
1777///
1778/// # Lifetime
1779///
1780/// The `'de` lifetime of this trait is the lifetime of data that may be
1781/// borrowed by deserialized map entries. See the page [Understanding
1782/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1783///
1784/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1785///
1786/// # Example implementation
1787///
1788/// The [example data format] presented on the website demonstrates an
1789/// implementation of `MapAccess` for a basic JSON data format.
1790///
1791/// [example data format]: https://serde.rs/data-format.html
1792pub trait MapAccess<'de> {
1793 /// The error type that can be returned if some error occurs during
1794 /// deserialization.
1795 type Error: Error;
1796
1797 /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1798 /// if there are no more remaining entries.
1799 ///
1800 /// `Deserialize` implementations should typically use
1801 /// `MapAccess::next_key` or `MapAccess::next_entry` instead.
1802 fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1803 where
1804 K: DeserializeSeed<'de>;
1805
1806 /// This returns a `Ok(value)` for the next value in the map.
1807 ///
1808 /// `Deserialize` implementations should typically use
1809 /// `MapAccess::next_value` instead.
1810 ///
1811 /// # Panics
1812 ///
1813 /// Calling `next_value_seed` before `next_key_seed` is incorrect and is
1814 /// allowed to panic or return bogus results.
1815 fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1816 where
1817 V: DeserializeSeed<'de>;
1818
1819 /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1820 /// the map, or `Ok(None)` if there are no more remaining items.
1821 ///
1822 /// `MapAccess` implementations should override the default behavior if a
1823 /// more efficient implementation is possible.
1824 ///
1825 /// `Deserialize` implementations should typically use
1826 /// `MapAccess::next_entry` instead.
1827 #[inline]
1828 fn next_entry_seed<K, V>(
1829 &mut self,
1830 kseed: K,
1831 vseed: V,
1832 ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1833 where
1834 K: DeserializeSeed<'de>,
1835 V: DeserializeSeed<'de>,
1836 {
1837 match tri!(self.next_key_seed(kseed)) {
1838 Some(key) => {
1839 let value = tri!(self.next_value_seed(vseed));
1840 Ok(Some((key, value)))
1841 }
1842 None => Ok(None),
1843 }
1844 }
1845
1846 /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1847 /// if there are no more remaining entries.
1848 ///
1849 /// This method exists as a convenience for `Deserialize` implementations.
1850 /// `MapAccess` implementations should not override the default behavior.
1851 #[inline]
1852 fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1853 where
1854 K: Deserialize<'de>,
1855 {
1856 self.next_key_seed(PhantomData)
1857 }
1858
1859 /// This returns a `Ok(value)` for the next value in the map.
1860 ///
1861 /// This method exists as a convenience for `Deserialize` implementations.
1862 /// `MapAccess` implementations should not override the default behavior.
1863 ///
1864 /// # Panics
1865 ///
1866 /// Calling `next_value` before `next_key` is incorrect and is allowed to
1867 /// panic or return bogus results.
1868 #[inline]
1869 fn next_value<V>(&mut self) -> Result<V, Self::Error>
1870 where
1871 V: Deserialize<'de>,
1872 {
1873 self.next_value_seed(PhantomData)
1874 }
1875
1876 /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1877 /// the map, or `Ok(None)` if there are no more remaining items.
1878 ///
1879 /// This method exists as a convenience for `Deserialize` implementations.
1880 /// `MapAccess` implementations should not override the default behavior.
1881 #[inline]
1882 fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1883 where
1884 K: Deserialize<'de>,
1885 V: Deserialize<'de>,
1886 {
1887 self.next_entry_seed(PhantomData, PhantomData)
1888 }
1889
1890 /// Returns the number of entries remaining in the map, if known.
1891 #[inline]
1892 fn size_hint(&self) -> Option<usize> {
1893 None
1894 }
1895}
1896
1897impl<'de, A> MapAccess<'de> for &mut A
1898where
1899 A: ?Sized + MapAccess<'de>,
1900{
1901 type Error = A::Error;
1902
1903 #[inline]
1904 fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1905 where
1906 K: DeserializeSeed<'de>,
1907 {
1908 (**self).next_key_seed(seed)
1909 }
1910
1911 #[inline]
1912 fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1913 where
1914 V: DeserializeSeed<'de>,
1915 {
1916 (**self).next_value_seed(seed)
1917 }
1918
1919 #[inline]
1920 fn next_entry_seed<K, V>(
1921 &mut self,
1922 kseed: K,
1923 vseed: V,
1924 ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1925 where
1926 K: DeserializeSeed<'de>,
1927 V: DeserializeSeed<'de>,
1928 {
1929 (**self).next_entry_seed(kseed, vseed)
1930 }
1931
1932 #[inline]
1933 fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1934 where
1935 K: Deserialize<'de>,
1936 V: Deserialize<'de>,
1937 {
1938 (**self).next_entry()
1939 }
1940
1941 #[inline]
1942 fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1943 where
1944 K: Deserialize<'de>,
1945 {
1946 (**self).next_key()
1947 }
1948
1949 #[inline]
1950 fn next_value<V>(&mut self) -> Result<V, Self::Error>
1951 where
1952 V: Deserialize<'de>,
1953 {
1954 (**self).next_value()
1955 }
1956
1957 #[inline]
1958 fn size_hint(&self) -> Option<usize> {
1959 (**self).size_hint()
1960 }
1961}
1962
1963////////////////////////////////////////////////////////////////////////////////
1964
1965/// Provides a `Visitor` access to the data of an enum in the input.
1966///
1967/// `EnumAccess` is created by the `Deserializer` and passed to the
1968/// `Visitor` in order to identify which variant of an enum to deserialize.
1969///
1970/// # Lifetime
1971///
1972/// The `'de` lifetime of this trait is the lifetime of data that may be
1973/// borrowed by the deserialized enum variant. See the page [Understanding
1974/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1975///
1976/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1977///
1978/// # Example implementation
1979///
1980/// The [example data format] presented on the website demonstrates an
1981/// implementation of `EnumAccess` for a basic JSON data format.
1982///
1983/// [example data format]: https://serde.rs/data-format.html
1984pub trait EnumAccess<'de>: Sized {
1985 /// The error type that can be returned if some error occurs during
1986 /// deserialization.
1987 type Error: Error;
1988 /// The `Visitor` that will be used to deserialize the content of the enum
1989 /// variant.
1990 type Variant: VariantAccess<'de, Error = Self::Error>;
1991
1992 /// `variant` is called to identify which variant to deserialize.
1993 ///
1994 /// `Deserialize` implementations should typically use `EnumAccess::variant`
1995 /// instead.
1996 fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error>
1997 where
1998 V: DeserializeSeed<'de>;
1999
2000 /// `variant` is called to identify which variant to deserialize.
2001 ///
2002 /// This method exists as a convenience for `Deserialize` implementations.
2003 /// `EnumAccess` implementations should not override the default behavior.
2004 #[inline]
2005 fn variant<V>(self) -> Result<(V, Self::Variant), Self::Error>
2006 where
2007 V: Deserialize<'de>,
2008 {
2009 self.variant_seed(PhantomData)
2010 }
2011}
2012
2013/// `VariantAccess` is a visitor that is created by the `Deserializer` and
2014/// passed to the `Deserialize` to deserialize the content of a particular enum
2015/// variant.
2016///
2017/// # Lifetime
2018///
2019/// The `'de` lifetime of this trait is the lifetime of data that may be
2020/// borrowed by the deserialized enum variant. See the page [Understanding
2021/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2022///
2023/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2024///
2025/// # Example implementation
2026///
2027/// The [example data format] presented on the website demonstrates an
2028/// implementation of `VariantAccess` for a basic JSON data format.
2029///
2030/// [example data format]: https://serde.rs/data-format.html
2031pub trait VariantAccess<'de>: Sized {
2032 /// The error type that can be returned if some error occurs during
2033 /// deserialization. Must match the error type of our `EnumAccess`.
2034 type Error: Error;
2035
2036 /// Called when deserializing a variant with no values.
2037 ///
2038 /// If the data contains a different type of variant, the following
2039 /// `invalid_type` error should be constructed:
2040 ///
2041 /// ```edition2021
2042 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2043 /// #
2044 /// # struct X;
2045 /// #
2046 /// # impl<'de> VariantAccess<'de> for X {
2047 /// # type Error = value::Error;
2048 /// #
2049 /// fn unit_variant(self) -> Result<(), Self::Error> {
2050 /// // What the data actually contained; suppose it is a tuple variant.
2051 /// let unexp = Unexpected::TupleVariant;
2052 /// Err(de::Error::invalid_type(unexp, &"unit variant"))
2053 /// }
2054 /// #
2055 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2056 /// # where
2057 /// # T: DeserializeSeed<'de>,
2058 /// # { unimplemented!() }
2059 /// #
2060 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2061 /// # where
2062 /// # V: Visitor<'de>,
2063 /// # { unimplemented!() }
2064 /// #
2065 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2066 /// # where
2067 /// # V: Visitor<'de>,
2068 /// # { unimplemented!() }
2069 /// # }
2070 /// ```
2071 fn unit_variant(self) -> Result<(), Self::Error>;
2072
2073 /// Called when deserializing a variant with a single value.
2074 ///
2075 /// `Deserialize` implementations should typically use
2076 /// `VariantAccess::newtype_variant` instead.
2077 ///
2078 /// If the data contains a different type of variant, the following
2079 /// `invalid_type` error should be constructed:
2080 ///
2081 /// ```edition2021
2082 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2083 /// #
2084 /// # struct X;
2085 /// #
2086 /// # impl<'de> VariantAccess<'de> for X {
2087 /// # type Error = value::Error;
2088 /// #
2089 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2090 /// # unimplemented!()
2091 /// # }
2092 /// #
2093 /// fn newtype_variant_seed<T>(self, _seed: T) -> Result<T::Value, Self::Error>
2094 /// where
2095 /// T: DeserializeSeed<'de>,
2096 /// {
2097 /// // What the data actually contained; suppose it is a unit variant.
2098 /// let unexp = Unexpected::UnitVariant;
2099 /// Err(de::Error::invalid_type(unexp, &"newtype variant"))
2100 /// }
2101 /// #
2102 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2103 /// # where
2104 /// # V: Visitor<'de>,
2105 /// # { unimplemented!() }
2106 /// #
2107 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2108 /// # where
2109 /// # V: Visitor<'de>,
2110 /// # { unimplemented!() }
2111 /// # }
2112 /// ```
2113 fn newtype_variant_seed<T>(self, seed: T) -> Result<T::Value, Self::Error>
2114 where
2115 T: DeserializeSeed<'de>;
2116
2117 /// Called when deserializing a variant with a single value.
2118 ///
2119 /// This method exists as a convenience for `Deserialize` implementations.
2120 /// `VariantAccess` implementations should not override the default
2121 /// behavior.
2122 #[inline]
2123 fn newtype_variant<T>(self) -> Result<T, Self::Error>
2124 where
2125 T: Deserialize<'de>,
2126 {
2127 self.newtype_variant_seed(PhantomData)
2128 }
2129
2130 /// Called when deserializing a tuple-like variant.
2131 ///
2132 /// The `len` is the number of fields expected in the tuple variant.
2133 ///
2134 /// If the data contains a different type of variant, the following
2135 /// `invalid_type` error should be constructed:
2136 ///
2137 /// ```edition2021
2138 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2139 /// #
2140 /// # struct X;
2141 /// #
2142 /// # impl<'de> VariantAccess<'de> for X {
2143 /// # type Error = value::Error;
2144 /// #
2145 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2146 /// # unimplemented!()
2147 /// # }
2148 /// #
2149 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2150 /// # where
2151 /// # T: DeserializeSeed<'de>,
2152 /// # { unimplemented!() }
2153 /// #
2154 /// fn tuple_variant<V>(self, _len: usize, _visitor: V) -> Result<V::Value, Self::Error>
2155 /// where
2156 /// V: Visitor<'de>,
2157 /// {
2158 /// // What the data actually contained; suppose it is a unit variant.
2159 /// let unexp = Unexpected::UnitVariant;
2160 /// Err(de::Error::invalid_type(unexp, &"tuple variant"))
2161 /// }
2162 /// #
2163 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2164 /// # where
2165 /// # V: Visitor<'de>,
2166 /// # { unimplemented!() }
2167 /// # }
2168 /// ```
2169 fn tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
2170 where
2171 V: Visitor<'de>;
2172
2173 /// Called when deserializing a struct-like variant.
2174 ///
2175 /// The `fields` are the names of the fields of the struct variant.
2176 ///
2177 /// If the data contains a different type of variant, the following
2178 /// `invalid_type` error should be constructed:
2179 ///
2180 /// ```edition2021
2181 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2182 /// #
2183 /// # struct X;
2184 /// #
2185 /// # impl<'de> VariantAccess<'de> for X {
2186 /// # type Error = value::Error;
2187 /// #
2188 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2189 /// # unimplemented!()
2190 /// # }
2191 /// #
2192 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2193 /// # where
2194 /// # T: DeserializeSeed<'de>,
2195 /// # { unimplemented!() }
2196 /// #
2197 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2198 /// # where
2199 /// # V: Visitor<'de>,
2200 /// # { unimplemented!() }
2201 /// #
2202 /// fn struct_variant<V>(
2203 /// self,
2204 /// _fields: &'static [&'static str],
2205 /// _visitor: V,
2206 /// ) -> Result<V::Value, Self::Error>
2207 /// where
2208 /// V: Visitor<'de>,
2209 /// {
2210 /// // What the data actually contained; suppose it is a unit variant.
2211 /// let unexp = Unexpected::UnitVariant;
2212 /// Err(de::Error::invalid_type(unexp, &"struct variant"))
2213 /// }
2214 /// # }
2215 /// ```
2216 fn struct_variant<V>(
2217 self,
2218 fields: &'static [&'static str],
2219 visitor: V,
2220 ) -> Result<V::Value, Self::Error>
2221 where
2222 V: Visitor<'de>;
2223}
2224
2225////////////////////////////////////////////////////////////////////////////////
2226
2227/// Converts an existing value into a `Deserializer` from which other values can
2228/// be deserialized.
2229///
2230/// # Lifetime
2231///
2232/// The `'de` lifetime of this trait is the lifetime of data that may be
2233/// borrowed from the resulting `Deserializer`. See the page [Understanding
2234/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2235///
2236/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2237///
2238/// # Example
2239///
2240/// ```edition2021
2241/// use serde::de::{value, Deserialize, IntoDeserializer};
2242/// use serde_derive::Deserialize;
2243/// use std::str::FromStr;
2244///
2245/// #[derive(Deserialize)]
2246/// enum Setting {
2247/// On,
2248/// Off,
2249/// }
2250///
2251/// impl FromStr for Setting {
2252/// type Err = value::Error;
2253///
2254/// fn from_str(s: &str) -> Result<Self, Self::Err> {
2255/// Self::deserialize(s.into_deserializer())
2256/// }
2257/// }
2258/// ```
2259pub trait IntoDeserializer<'de, E: Error = value::Error> {
2260 /// The type of the deserializer being converted into.
2261 type Deserializer: Deserializer<'de, Error = E>;
2262
2263 /// Convert this value into a deserializer.
2264 fn into_deserializer(self) -> Self::Deserializer;
2265}
2266
2267////////////////////////////////////////////////////////////////////////////////
2268
2269/// Used in error messages.
2270///
2271/// - expected `a`
2272/// - expected `a` or `b`
2273/// - expected one of `a`, `b`, `c`
2274///
2275/// The slice of names must not be empty.
2276struct OneOf {
2277 names: &'static [&'static str],
2278}
2279
2280impl Display for OneOf {
2281 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
2282 match self.names.len() {
2283 0 => panic!(), // special case elsewhere
2284 1 => write!(formatter, "`{}`", self.names[0]),
2285 2 => write!(formatter, "`{}` or `{}`", self.names[0], self.names[1]),
2286 _ => {
2287 tri!(formatter.write_str("one of "));
2288 for (i, alt) in self.names.iter().enumerate() {
2289 if i > 0 {
2290 tri!(formatter.write_str(", "));
2291 }
2292 tri!(write!(formatter, "`{}`", alt));
2293 }
2294 Ok(())
2295 }
2296 }
2297 }
2298}
2299
2300struct WithDecimalPoint(f64);
2301
2302impl Display for WithDecimalPoint {
2303 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
2304 struct LookForDecimalPoint<'f, 'a> {
2305 formatter: &'f mut fmt::Formatter<'a>,
2306 has_decimal_point: bool,
2307 }
2308
2309 impl<'f, 'a> fmt::Write for LookForDecimalPoint<'f, 'a> {
2310 fn write_str(&mut self, fragment: &str) -> fmt::Result {
2311 self.has_decimal_point |= fragment.contains('.');
2312 self.formatter.write_str(fragment)
2313 }
2314
2315 fn write_char(&mut self, ch: char) -> fmt::Result {
2316 self.has_decimal_point |= ch == '.';
2317 self.formatter.write_char(ch)
2318 }
2319 }
2320
2321 if self.0.is_finite() {
2322 let mut writer = LookForDecimalPoint {
2323 formatter,
2324 has_decimal_point: false,
2325 };
2326 tri!(write!(writer, "{}", self.0));
2327 if !writer.has_decimal_point {
2328 tri!(formatter.write_str(".0"));
2329 }
2330 } else {
2331 tri!(write!(formatter, "{}", self.0));
2332 }
2333 Ok(())
2334 }
2335}