rayon/iter/splitter.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
use super::plumbing::*;
use super::*;
use std::fmt::{self, Debug};
/// The `split` function takes arbitrary data and a closure that knows how to
/// split it, and turns this into a `ParallelIterator`.
///
/// # Examples
///
/// As a simple example, Rayon can recursively split ranges of indices
///
/// ```
/// use rayon::iter;
/// use rayon::prelude::*;
/// use std::ops::Range;
///
///
/// // We define a range of indices as follows
/// type Range1D = Range<usize>;
///
/// // Splitting it in two can be done like this
/// fn split_range1(r: Range1D) -> (Range1D, Option<Range1D>) {
/// // We are mathematically unable to split the range if there is only
/// // one point inside of it, but we could stop splitting before that.
/// if r.end - r.start <= 1 { return (r, None); }
///
/// // Here, our range is considered large enough to be splittable
/// let midpoint = r.start + (r.end - r.start) / 2;
/// (r.start..midpoint, Some(midpoint..r.end))
/// }
///
/// // By using iter::split, Rayon will split the range until it has enough work
/// // to feed the CPU cores, then give us the resulting sub-ranges
/// iter::split(0..4096, split_range1).for_each(|sub_range| {
/// // As our initial range had a power-of-two size, the final sub-ranges
/// // should have power-of-two sizes too
/// assert!((sub_range.end - sub_range.start).is_power_of_two());
/// });
/// ```
///
/// This recursive splitting can be extended to two or three dimensions,
/// to reproduce a classic "block-wise" parallelization scheme of graphics and
/// numerical simulations:
///
/// ```
/// # use rayon::iter;
/// # use rayon::prelude::*;
/// # use std::ops::Range;
/// # type Range1D = Range<usize>;
/// # fn split_range1(r: Range1D) -> (Range1D, Option<Range1D>) {
/// # if r.end - r.start <= 1 { return (r, None); }
/// # let midpoint = r.start + (r.end - r.start) / 2;
/// # (r.start..midpoint, Some(midpoint..r.end))
/// # }
/// #
/// // A two-dimensional range of indices can be built out of two 1D ones
/// struct Range2D {
/// // Range of horizontal indices
/// pub rx: Range1D,
///
/// // Range of vertical indices
/// pub ry: Range1D,
/// }
///
/// // We want to recursively split them by the largest dimension until we have
/// // enough sub-ranges to feed our mighty multi-core CPU. This function
/// // carries out one such split.
/// fn split_range2(r2: Range2D) -> (Range2D, Option<Range2D>) {
/// // Decide on which axis (horizontal/vertical) the range should be split
/// let width = r2.rx.end - r2.rx.start;
/// let height = r2.ry.end - r2.ry.start;
/// if width >= height {
/// // This is a wide range, split it on the horizontal axis
/// let (split_rx, ry) = (split_range1(r2.rx), r2.ry);
/// let out1 = Range2D {
/// rx: split_rx.0,
/// ry: ry.clone(),
/// };
/// let out2 = split_rx.1.map(|rx| Range2D { rx, ry });
/// (out1, out2)
/// } else {
/// // This is a tall range, split it on the vertical axis
/// let (rx, split_ry) = (r2.rx, split_range1(r2.ry));
/// let out1 = Range2D {
/// rx: rx.clone(),
/// ry: split_ry.0,
/// };
/// let out2 = split_ry.1.map(|ry| Range2D { rx, ry, });
/// (out1, out2)
/// }
/// }
///
/// // Again, rayon can handle the recursive splitting for us
/// let range = Range2D { rx: 0..800, ry: 0..600 };
/// iter::split(range, split_range2).for_each(|sub_range| {
/// // If the sub-ranges were indeed split by the largest dimension, then
/// // if no dimension was twice larger than the other initially, this
/// // property will remain true in the final sub-ranges.
/// let width = sub_range.rx.end - sub_range.rx.start;
/// let height = sub_range.ry.end - sub_range.ry.start;
/// assert!((width / 2 <= height) && (height / 2 <= width));
/// });
/// ```
///
pub fn split<D, S>(data: D, splitter: S) -> Split<D, S>
where
D: Send,
S: Fn(D) -> (D, Option<D>) + Sync,
{
Split { data, splitter }
}
/// `Split` is a parallel iterator using arbitrary data and a splitting function.
/// This struct is created by the [`split()`] function.
///
/// [`split()`]: fn.split.html
#[derive(Clone)]
pub struct Split<D, S> {
data: D,
splitter: S,
}
impl<D: Debug, S> Debug for Split<D, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Split").field("data", &self.data).finish()
}
}
impl<D, S> ParallelIterator for Split<D, S>
where
D: Send,
S: Fn(D) -> (D, Option<D>) + Sync + Send,
{
type Item = D;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
let producer = SplitProducer {
data: self.data,
splitter: &self.splitter,
};
bridge_unindexed(producer, consumer)
}
}
struct SplitProducer<'a, D, S> {
data: D,
splitter: &'a S,
}
impl<'a, D, S> UnindexedProducer for SplitProducer<'a, D, S>
where
D: Send,
S: Fn(D) -> (D, Option<D>) + Sync,
{
type Item = D;
fn split(mut self) -> (Self, Option<Self>) {
let splitter = self.splitter;
let (left, right) = splitter(self.data);
self.data = left;
(self, right.map(|data| SplitProducer { data, splitter }))
}
fn fold_with<F>(self, folder: F) -> F
where
F: Folder<Self::Item>,
{
folder.consume(self.data)
}
}