rand/seq/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Sequence-related functionality
//!
//! This module provides:
//!
//! * [`SliceRandom`] slice sampling and mutation
//! * [`IteratorRandom`] iterator sampling
//! * [`index::sample`] low-level API to choose multiple indices from
//! `0..length`
//!
//! Also see:
//!
//! * [`crate::distributions::WeightedIndex`] distribution which provides
//! weighted index sampling.
//!
//! In order to make results reproducible across 32-64 bit architectures, all
//! `usize` indices are sampled as a `u32` where possible (also providing a
//! small performance boost in some cases).
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub mod index;
#[cfg(feature = "alloc")] use core::ops::Index;
#[cfg(feature = "alloc")] use alloc::vec::Vec;
#[cfg(feature = "alloc")]
use crate::distributions::uniform::{SampleBorrow, SampleUniform};
#[cfg(feature = "alloc")] use crate::distributions::WeightedError;
use crate::Rng;
/// Extension trait on slices, providing random mutation and sampling methods.
///
/// This trait is implemented on all `[T]` slice types, providing several
/// methods for choosing and shuffling elements. You must `use` this trait:
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = rand::thread_rng();
/// let mut bytes = "Hello, random!".to_string().into_bytes();
/// bytes.shuffle(&mut rng);
/// let str = String::from_utf8(bytes).unwrap();
/// println!("{}", str);
/// ```
/// Example output (non-deterministic):
/// ```none
/// l,nmroHado !le
/// ```
pub trait SliceRandom {
/// The element type.
type Item;
/// Returns a reference to one random element of the slice, or `None` if the
/// slice is empty.
///
/// For slices, complexity is `O(1)`.
///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::seq::SliceRandom;
///
/// let choices = [1, 2, 4, 8, 16, 32];
/// let mut rng = thread_rng();
/// println!("{:?}", choices.choose(&mut rng));
/// assert_eq!(choices[..0].choose(&mut rng), None);
/// ```
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
where R: Rng + ?Sized;
/// Returns a mutable reference to one random element of the slice, or
/// `None` if the slice is empty.
///
/// For slices, complexity is `O(1)`.
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
where R: Rng + ?Sized;
/// Chooses `amount` elements from the slice at random, without repetition,
/// and in random order. The returned iterator is appropriate both for
/// collection into a `Vec` and filling an existing buffer (see example).
///
/// In case this API is not sufficiently flexible, use [`index::sample`].
///
/// For slices, complexity is the same as [`index::sample`].
///
/// # Example
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = &mut rand::thread_rng();
/// let sample = "Hello, audience!".as_bytes();
///
/// // collect the results into a vector:
/// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
///
/// // store in a buffer:
/// let mut buf = [0u8; 5];
/// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
/// *slot = *b;
/// }
/// ```
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
where R: Rng + ?Sized;
/// Similar to [`choose`], but where the likelihood of each outcome may be
/// specified.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// See also [`choose_weighted_mut`], [`distributions::weighted`].
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1)];
/// let mut rng = thread_rng();
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
/// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
/// ```
/// [`choose`]: SliceRandom::choose
/// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut
/// [`distributions::weighted`]: crate::distributions::weighted
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn choose_weighted<R, F, B, X>(
&self, rng: &mut R, weight: F,
) -> Result<&Self::Item, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> B,
B: SampleBorrow<X>,
X: SampleUniform
+ for<'a> ::core::ops::AddAssign<&'a X>
+ ::core::cmp::PartialOrd<X>
+ Clone
+ Default;
/// Similar to [`choose_mut`], but where the likelihood of each outcome may
/// be specified.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// See also [`choose_weighted`], [`distributions::weighted`].
///
/// [`choose_mut`]: SliceRandom::choose_mut
/// [`choose_weighted`]: SliceRandom::choose_weighted
/// [`distributions::weighted`]: crate::distributions::weighted
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn choose_weighted_mut<R, F, B, X>(
&mut self, rng: &mut R, weight: F,
) -> Result<&mut Self::Item, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> B,
B: SampleBorrow<X>,
X: SampleUniform
+ for<'a> ::core::ops::AddAssign<&'a X>
+ ::core::cmp::PartialOrd<X>
+ Clone
+ Default;
/// Similar to [`choose_multiple`], but where the likelihood of each element's
/// inclusion in the output may be specified. The elements are returned in an
/// arbitrary, unspecified order.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// If all of the weights are equal, even if they are all zero, each element has
/// an equal likelihood of being selected.
///
/// The complexity of this method depends on the feature `partition_at_index`.
/// If the feature is enabled, then for slices of length `n`, the complexity
/// is `O(n)` space and `O(n)` time. Otherwise, the complexity is `O(n)` space and
/// `O(n * log amount)` time.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1)];
/// let mut rng = thread_rng();
/// // First Draw * Second Draw = total odds
/// // -----------------------
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
/// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
/// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
/// ```
/// [`choose_multiple`]: SliceRandom::choose_multiple
//
// Note: this is feature-gated on std due to usage of f64::powf.
// If necessary, we may use alloc+libm as an alternative (see PR #1089).
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
fn choose_multiple_weighted<R, F, X>(
&self, rng: &mut R, amount: usize, weight: F,
) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> X,
X: Into<f64>;
/// Shuffle a mutable slice in place.
///
/// For slices of length `n`, complexity is `O(n)`.
///
/// # Example
///
/// ```
/// use rand::seq::SliceRandom;
/// use rand::thread_rng;
///
/// let mut rng = thread_rng();
/// let mut y = [1, 2, 3, 4, 5];
/// println!("Unshuffled: {:?}", y);
/// y.shuffle(&mut rng);
/// println!("Shuffled: {:?}", y);
/// ```
fn shuffle<R>(&mut self, rng: &mut R)
where R: Rng + ?Sized;
/// Shuffle a slice in place, but exit early.
///
/// Returns two mutable slices from the source slice. The first contains
/// `amount` elements randomly permuted. The second has the remaining
/// elements that are not fully shuffled.
///
/// This is an efficient method to select `amount` elements at random from
/// the slice, provided the slice may be mutated.
///
/// If you only need to choose elements randomly and `amount > self.len()/2`
/// then you may improve performance by taking
/// `amount = values.len() - amount` and using only the second slice.
///
/// If `amount` is greater than the number of elements in the slice, this
/// will perform a full shuffle.
///
/// For slices, complexity is `O(m)` where `m = amount`.
fn partial_shuffle<R>(
&mut self, rng: &mut R, amount: usize,
) -> (&mut [Self::Item], &mut [Self::Item])
where R: Rng + ?Sized;
}
/// Extension trait on iterators, providing random sampling methods.
///
/// This trait is implemented on all iterators `I` where `I: Iterator + Sized`
/// and provides methods for
/// choosing one or more elements. You must `use` this trait:
///
/// ```
/// use rand::seq::IteratorRandom;
///
/// let mut rng = rand::thread_rng();
///
/// let faces = "πππππ π’";
/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
/// ```
/// Example output (non-deterministic):
/// ```none
/// I am π!
/// ```
pub trait IteratorRandom: Iterator + Sized {
/// Choose one element at random from the iterator.
///
/// Returns `None` if and only if the iterator is empty.
///
/// This method uses [`Iterator::size_hint`] for optimisation. With an
/// accurate hint and where [`Iterator::nth`] is a constant-time operation
/// this method can offer `O(1)` performance. Where no size hint is
/// available, complexity is `O(n)` where `n` is the iterator length.
/// Partial hints (where `lower > 0`) also improve performance.
///
/// Note that the output values and the number of RNG samples used
/// depends on size hints. In particular, `Iterator` combinators that don't
/// change the values yielded but change the size hints may result in
/// `choose` returning different elements. If you want consistent results
/// and RNG usage consider using [`IteratorRandom::choose_stable`].
fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
where R: Rng + ?Sized {
let (mut lower, mut upper) = self.size_hint();
let mut consumed = 0;
let mut result = None;
// Handling for this condition outside the loop allows the optimizer to eliminate the loop
// when the Iterator is an ExactSizeIterator. This has a large performance impact on e.g.
// seq_iter_choose_from_1000.
if upper == Some(lower) {
return if lower == 0 {
None
} else {
self.nth(gen_index(rng, lower))
};
}
// Continue until the iterator is exhausted
loop {
if lower > 1 {
let ix = gen_index(rng, lower + consumed);
let skip = if ix < lower {
result = self.nth(ix);
lower - (ix + 1)
} else {
lower
};
if upper == Some(lower) {
return result;
}
consumed += lower;
if skip > 0 {
self.nth(skip - 1);
}
} else {
let elem = self.next();
if elem.is_none() {
return result;
}
consumed += 1;
if gen_index(rng, consumed) == 0 {
result = elem;
}
}
let hint = self.size_hint();
lower = hint.0;
upper = hint.1;
}
}
/// Choose one element at random from the iterator.
///
/// Returns `None` if and only if the iterator is empty.
///
/// This method is very similar to [`choose`] except that the result
/// only depends on the length of the iterator and the values produced by
/// `rng`. Notably for any iterator of a given length this will make the
/// same requests to `rng` and if the same sequence of values are produced
/// the same index will be selected from `self`. This may be useful if you
/// need consistent results no matter what type of iterator you are working
/// with. If you do not need this stability prefer [`choose`].
///
/// Note that this method still uses [`Iterator::size_hint`] to skip
/// constructing elements where possible, however the selection and `rng`
/// calls are the same in the face of this optimization. If you want to
/// force every element to be created regardless call `.inspect(|e| ())`.
///
/// [`choose`]: IteratorRandom::choose
fn choose_stable<R>(mut self, rng: &mut R) -> Option<Self::Item>
where R: Rng + ?Sized {
let mut consumed = 0;
let mut result = None;
loop {
// Currently the only way to skip elements is `nth()`. So we need to
// store what index to access next here.
// This should be replaced by `advance_by()` once it is stable:
// https://github.com/rust-lang/rust/issues/77404
let mut next = 0;
let (lower, _) = self.size_hint();
if lower >= 2 {
let highest_selected = (0..lower)
.filter(|ix| gen_index(rng, consumed+ix+1) == 0)
.last();
consumed += lower;
next = lower;
if let Some(ix) = highest_selected {
result = self.nth(ix);
next -= ix + 1;
debug_assert!(result.is_some(), "iterator shorter than size_hint().0");
}
}
let elem = self.nth(next);
if elem.is_none() {
return result
}
if gen_index(rng, consumed+1) == 0 {
result = elem;
}
consumed += 1;
}
}
/// Collects values at random from the iterator into a supplied buffer
/// until that buffer is filled.
///
/// Although the elements are selected randomly, the order of elements in
/// the buffer is neither stable nor fully random. If random ordering is
/// desired, shuffle the result.
///
/// Returns the number of elements added to the buffer. This equals the length
/// of the buffer unless the iterator contains insufficient elements, in which
/// case this equals the number of elements available.
///
/// Complexity is `O(n)` where `n` is the length of the iterator.
/// For slices, prefer [`SliceRandom::choose_multiple`].
fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
where R: Rng + ?Sized {
let amount = buf.len();
let mut len = 0;
while len < amount {
if let Some(elem) = self.next() {
buf[len] = elem;
len += 1;
} else {
// Iterator exhausted; stop early
return len;
}
}
// Continue, since the iterator was not exhausted
for (i, elem) in self.enumerate() {
let k = gen_index(rng, i + 1 + amount);
if let Some(slot) = buf.get_mut(k) {
*slot = elem;
}
}
len
}
/// Collects `amount` values at random from the iterator into a vector.
///
/// This is equivalent to `choose_multiple_fill` except for the result type.
///
/// Although the elements are selected randomly, the order of elements in
/// the buffer is neither stable nor fully random. If random ordering is
/// desired, shuffle the result.
///
/// The length of the returned vector equals `amount` unless the iterator
/// contains insufficient elements, in which case it equals the number of
/// elements available.
///
/// Complexity is `O(n)` where `n` is the length of the iterator.
/// For slices, prefer [`SliceRandom::choose_multiple`].
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
where R: Rng + ?Sized {
let mut reservoir = Vec::with_capacity(amount);
reservoir.extend(self.by_ref().take(amount));
// Continue unless the iterator was exhausted
//
// note: this prevents iterators that "restart" from causing problems.
// If the iterator stops once, then so do we.
if reservoir.len() == amount {
for (i, elem) in self.enumerate() {
let k = gen_index(rng, i + 1 + amount);
if let Some(slot) = reservoir.get_mut(k) {
*slot = elem;
}
}
} else {
// Don't hang onto extra memory. There is a corner case where
// `amount` was much less than `self.len()`.
reservoir.shrink_to_fit();
}
reservoir
}
}
impl<T> SliceRandom for [T] {
type Item = T;
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
where R: Rng + ?Sized {
if self.is_empty() {
None
} else {
Some(&self[gen_index(rng, self.len())])
}
}
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
where R: Rng + ?Sized {
if self.is_empty() {
None
} else {
let len = self.len();
Some(&mut self[gen_index(rng, len)])
}
}
#[cfg(feature = "alloc")]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
where R: Rng + ?Sized {
let amount = ::core::cmp::min(amount, self.len());
SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample(rng, self.len(), amount).into_iter(),
}
}
#[cfg(feature = "alloc")]
fn choose_weighted<R, F, B, X>(
&self, rng: &mut R, weight: F,
) -> Result<&Self::Item, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> B,
B: SampleBorrow<X>,
X: SampleUniform
+ for<'a> ::core::ops::AddAssign<&'a X>
+ ::core::cmp::PartialOrd<X>
+ Clone
+ Default,
{
use crate::distributions::{Distribution, WeightedIndex};
let distr = WeightedIndex::new(self.iter().map(weight))?;
Ok(&self[distr.sample(rng)])
}
#[cfg(feature = "alloc")]
fn choose_weighted_mut<R, F, B, X>(
&mut self, rng: &mut R, weight: F,
) -> Result<&mut Self::Item, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> B,
B: SampleBorrow<X>,
X: SampleUniform
+ for<'a> ::core::ops::AddAssign<&'a X>
+ ::core::cmp::PartialOrd<X>
+ Clone
+ Default,
{
use crate::distributions::{Distribution, WeightedIndex};
let distr = WeightedIndex::new(self.iter().map(weight))?;
Ok(&mut self[distr.sample(rng)])
}
#[cfg(feature = "std")]
fn choose_multiple_weighted<R, F, X>(
&self, rng: &mut R, amount: usize, weight: F,
) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
where
R: Rng + ?Sized,
F: Fn(&Self::Item) -> X,
X: Into<f64>,
{
let amount = ::core::cmp::min(amount, self.len());
Ok(SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample_weighted(
rng,
self.len(),
|idx| weight(&self[idx]).into(),
amount,
)?
.into_iter(),
})
}
fn shuffle<R>(&mut self, rng: &mut R)
where R: Rng + ?Sized {
for i in (1..self.len()).rev() {
// invariant: elements with index > i have been locked in place.
self.swap(i, gen_index(rng, i + 1));
}
}
fn partial_shuffle<R>(
&mut self, rng: &mut R, amount: usize,
) -> (&mut [Self::Item], &mut [Self::Item])
where R: Rng + ?Sized {
// This applies Durstenfeld's algorithm for the
// [FisherβYates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
// for an unbiased permutation, but exits early after choosing `amount`
// elements.
let len = self.len();
let end = if amount >= len { 0 } else { len - amount };
for i in (end..len).rev() {
// invariant: elements with index > i have been locked in place.
self.swap(i, gen_index(rng, i + 1));
}
let r = self.split_at_mut(end);
(r.1, r.0)
}
}
impl<I> IteratorRandom for I where I: Iterator + Sized {}
/// An iterator over multiple slice elements.
///
/// This struct is created by
/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
slice: &'a S,
_phantom: ::core::marker::PhantomData<T>,
indices: index::IndexVecIntoIter,
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
// TODO: investigate using SliceIndex::get_unchecked when stable
self.indices.next().map(|i| &self.slice[i as usize])
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.indices.len(), Some(self.indices.len()))
}
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
for SliceChooseIter<'a, S, T>
{
fn len(&self) -> usize {
self.indices.len()
}
}
// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where
// possible, primarily in order to produce the same output on 32-bit and 64-bit
// platforms.
#[inline]
fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize {
if ubound <= (core::u32::MAX as usize) {
rng.gen_range(0..ubound as u32) as usize
} else {
rng.gen_range(0..ubound)
}
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "alloc")] use crate::Rng;
#[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec;
#[test]
fn test_slice_choose() {
let mut r = crate::test::rng(107);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut chosen = [0i32; 14];
// The below all use a binomial distribution with n=1000, p=1/14.
// binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
for _ in 0..1000 {
let picked = *chars.choose(&mut r).unwrap();
chosen[(picked as usize) - ('a' as usize)] += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
chosen.iter_mut().for_each(|x| *x = 0);
for _ in 0..1000 {
*chosen.choose_mut(&mut r).unwrap() += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
let mut v: [isize; 0] = [];
assert_eq!(v.choose(&mut r), None);
assert_eq!(v.choose_mut(&mut r), None);
}
#[test]
fn value_stability_slice() {
let mut r = crate::test::rng(413);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
assert_eq!(chars.choose(&mut r), Some(&'l'));
assert_eq!(nums.choose_mut(&mut r), Some(&mut 10));
#[cfg(feature = "alloc")]
assert_eq!(
&chars
.choose_multiple(&mut r, 8)
.cloned()
.collect::<Vec<char>>(),
&['d', 'm', 'b', 'n', 'c', 'k', 'h', 'e']
);
#[cfg(feature = "alloc")]
assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'f'));
#[cfg(feature = "alloc")]
assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 5));
let mut r = crate::test::rng(414);
nums.shuffle(&mut r);
assert_eq!(nums, [9, 5, 3, 10, 7, 12, 8, 11, 6, 4, 0, 2, 1]);
nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
let res = nums.partial_shuffle(&mut r, 6);
assert_eq!(res.0, &mut [7, 4, 8, 6, 9, 3]);
assert_eq!(res.1, &mut [0, 1, 2, 12, 11, 5, 10]);
}
#[derive(Clone)]
struct UnhintedIterator<I: Iterator + Clone> {
iter: I,
}
impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
#[derive(Clone)]
struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
iter: I,
chunk_remaining: usize,
chunk_size: usize,
hint_total_size: bool,
}
impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
if self.chunk_remaining == 0 {
self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len());
}
self.chunk_remaining = self.chunk_remaining.saturating_sub(1);
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
self.chunk_remaining,
if self.hint_total_size {
Some(self.iter.len())
} else {
None
},
)
}
}
#[derive(Clone)]
struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
iter: I,
window_size: usize,
hint_total_size: bool,
}
impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
::core::cmp::min(self.iter.len(), self.window_size),
if self.hint_total_size {
Some(self.iter.len())
} else {
None
},
)
}
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_iterator_choose() {
let r = &mut crate::test::rng(109);
fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
let mut chosen = [0i32; 9];
for _ in 0..1000 {
let picked = iter.clone().choose(r).unwrap();
chosen[picked] += 1;
}
for count in chosen.iter() {
// Samples should follow Binomial(1000, 1/9)
// Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
// Note: have seen 153, which is unlikely but not impossible.
assert!(
72 < *count && *count < 154,
"count not close to 1000/9: {}",
count
);
}
}
test_iter(r, 0..9);
test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
#[cfg(feature = "alloc")]
test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
test_iter(r, UnhintedIterator { iter: 0..9 });
test_iter(r, ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: false,
});
test_iter(r, ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: true,
});
test_iter(r, WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: false,
});
test_iter(r, WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: true,
});
assert_eq!((0..0).choose(r), None);
assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_iterator_choose_stable() {
let r = &mut crate::test::rng(109);
fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
let mut chosen = [0i32; 9];
for _ in 0..1000 {
let picked = iter.clone().choose_stable(r).unwrap();
chosen[picked] += 1;
}
for count in chosen.iter() {
// Samples should follow Binomial(1000, 1/9)
// Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
// Note: have seen 153, which is unlikely but not impossible.
assert!(
72 < *count && *count < 154,
"count not close to 1000/9: {}",
count
);
}
}
test_iter(r, 0..9);
test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
#[cfg(feature = "alloc")]
test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
test_iter(r, UnhintedIterator { iter: 0..9 });
test_iter(r, ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: false,
});
test_iter(r, ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: true,
});
test_iter(r, WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: false,
});
test_iter(r, WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: true,
});
assert_eq!((0..0).choose(r), None);
assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_iterator_choose_stable_stability() {
fn test_iter(iter: impl Iterator<Item = usize> + Clone) -> [i32; 9] {
let r = &mut crate::test::rng(109);
let mut chosen = [0i32; 9];
for _ in 0..1000 {
let picked = iter.clone().choose_stable(r).unwrap();
chosen[picked] += 1;
}
chosen
}
let reference = test_iter(0..9);
assert_eq!(test_iter([0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()), reference);
#[cfg(feature = "alloc")]
assert_eq!(test_iter((0..9).collect::<Vec<_>>().into_iter()), reference);
assert_eq!(test_iter(UnhintedIterator { iter: 0..9 }), reference);
assert_eq!(test_iter(ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: false,
}), reference);
assert_eq!(test_iter(ChunkHintedIterator {
iter: 0..9,
chunk_size: 4,
chunk_remaining: 4,
hint_total_size: true,
}), reference);
assert_eq!(test_iter(WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: false,
}), reference);
assert_eq!(test_iter(WindowHintedIterator {
iter: 0..9,
window_size: 2,
hint_total_size: true,
}), reference);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_shuffle() {
let mut r = crate::test::rng(108);
let empty: &mut [isize] = &mut [];
empty.shuffle(&mut r);
let mut one = [1];
one.shuffle(&mut r);
let b: &[_] = &[1];
assert_eq!(one, b);
let mut two = [1, 2];
two.shuffle(&mut r);
assert!(two == [1, 2] || two == [2, 1]);
fn move_last(slice: &mut [usize], pos: usize) {
// use slice[pos..].rotate_left(1); once we can use that
let last_val = slice[pos];
for i in pos..slice.len() - 1 {
slice[i] = slice[i + 1];
}
*slice.last_mut().unwrap() = last_val;
}
let mut counts = [0i32; 24];
for _ in 0..10000 {
let mut arr: [usize; 4] = [0, 1, 2, 3];
arr.shuffle(&mut r);
let mut permutation = 0usize;
let mut pos_value = counts.len();
for i in 0..4 {
pos_value /= 4 - i;
let pos = arr.iter().position(|&x| x == i).unwrap();
assert!(pos < (4 - i));
permutation += pos * pos_value;
move_last(&mut arr, pos);
assert_eq!(arr[3], i);
}
for (i, &a) in arr.iter().enumerate() {
assert_eq!(a, i);
}
counts[permutation] += 1;
}
for count in counts.iter() {
// Binomial(10000, 1/24) with average 416.667
// Octave: binocdf(n, 10000, 1/24)
// 99.9% chance samples lie within this range:
assert!(352 <= *count && *count <= 483, "count: {}", count);
}
}
#[test]
fn test_partial_shuffle() {
let mut r = crate::test::rng(118);
let mut empty: [u32; 0] = [];
let res = empty.partial_shuffle(&mut r, 10);
assert_eq!((res.0.len(), res.1.len()), (0, 0));
let mut v = [1, 2, 3, 4, 5];
let res = v.partial_shuffle(&mut r, 2);
assert_eq!((res.0.len(), res.1.len()), (2, 3));
assert!(res.0[0] != res.0[1]);
// First elements are only modified if selected, so at least one isn't modified:
assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
}
#[test]
#[cfg(feature = "alloc")]
fn test_sample_iter() {
let min_val = 1;
let max_val = 100;
let mut r = crate::test::rng(401);
let vals = (min_val..max_val).collect::<Vec<i32>>();
let small_sample = vals.iter().choose_multiple(&mut r, 5);
let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);
assert_eq!(small_sample.len(), 5);
assert_eq!(large_sample.len(), vals.len());
// no randomization happens when amount >= len
assert_eq!(large_sample, vals.iter().collect::<Vec<_>>());
assert!(small_sample
.iter()
.all(|e| { **e >= min_val && **e <= max_val }));
}
#[test]
#[cfg(feature = "alloc")]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted() {
let mut r = crate::test::rng(406);
const N_REPS: u32 = 3000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
let verify = |result: [i32; 14]| {
for (i, count) in result.iter().enumerate() {
let exp = (weights[i] * N_REPS) as f32 / total_weight;
let mut err = (*count as f32 - exp).abs();
if err != 0.0 {
err /= exp;
}
assert!(err <= 0.25);
}
};
// choose_weighted
fn get_weight<T>(item: &(u32, T)) -> u32 {
item.0
}
let mut chosen = [0i32; 14];
let mut items = [(0u32, 0usize); 14]; // (weight, index)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], i);
}
for _ in 0..N_REPS {
let item = items.choose_weighted(&mut r, get_weight).unwrap();
chosen[item.1] += 1;
}
verify(chosen);
// choose_weighted_mut
let mut items = [(0u32, 0i32); 14]; // (weight, count)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], 0);
}
for _ in 0..N_REPS {
items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
}
for (ch, item) in chosen.iter_mut().zip(items.iter()) {
*ch = item.1;
}
verify(chosen);
// Check error cases
let empty_slice = &mut [10][0..0];
assert_eq!(
empty_slice.choose_weighted(&mut r, |_| 1),
Err(WeightedError::NoItem)
);
assert_eq!(
empty_slice.choose_weighted_mut(&mut r, |_| 1),
Err(WeightedError::NoItem)
);
assert_eq!(
['x'].choose_weighted_mut(&mut r, |_| 0),
Err(WeightedError::AllWeightsZero)
);
assert_eq!(
[0, -1].choose_weighted_mut(&mut r, |x| *x),
Err(WeightedError::InvalidWeight)
);
assert_eq!(
[-1, 0].choose_weighted_mut(&mut r, |x| *x),
Err(WeightedError::InvalidWeight)
);
}
#[test]
fn value_stability_choose() {
fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
let mut rng = crate::test::rng(411);
iter.choose(&mut rng)
}
assert_eq!(choose([].iter().cloned()), None);
assert_eq!(choose(0..100), Some(33));
assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
assert_eq!(
choose(ChunkHintedIterator {
iter: 0..100,
chunk_size: 32,
chunk_remaining: 32,
hint_total_size: false,
}),
Some(39)
);
assert_eq!(
choose(ChunkHintedIterator {
iter: 0..100,
chunk_size: 32,
chunk_remaining: 32,
hint_total_size: true,
}),
Some(39)
);
assert_eq!(
choose(WindowHintedIterator {
iter: 0..100,
window_size: 32,
hint_total_size: false,
}),
Some(90)
);
assert_eq!(
choose(WindowHintedIterator {
iter: 0..100,
window_size: 32,
hint_total_size: true,
}),
Some(90)
);
}
#[test]
fn value_stability_choose_stable() {
fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
let mut rng = crate::test::rng(411);
iter.choose_stable(&mut rng)
}
assert_eq!(choose([].iter().cloned()), None);
assert_eq!(choose(0..100), Some(40));
assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
assert_eq!(
choose(ChunkHintedIterator {
iter: 0..100,
chunk_size: 32,
chunk_remaining: 32,
hint_total_size: false,
}),
Some(40)
);
assert_eq!(
choose(ChunkHintedIterator {
iter: 0..100,
chunk_size: 32,
chunk_remaining: 32,
hint_total_size: true,
}),
Some(40)
);
assert_eq!(
choose(WindowHintedIterator {
iter: 0..100,
window_size: 32,
hint_total_size: false,
}),
Some(40)
);
assert_eq!(
choose(WindowHintedIterator {
iter: 0..100,
window_size: 32,
hint_total_size: true,
}),
Some(40)
);
}
#[test]
fn value_stability_choose_multiple() {
fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
let mut rng = crate::test::rng(412);
let mut buf = [0u32; 8];
assert_eq!(iter.choose_multiple_fill(&mut rng, &mut buf), v.len());
assert_eq!(&buf[0..v.len()], v);
}
do_test(0..4, &[0, 1, 2, 3]);
do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
#[cfg(feature = "alloc")]
{
fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
let mut rng = crate::test::rng(412);
assert_eq!(iter.choose_multiple(&mut rng, v.len()), v);
}
do_test(0..4, &[0, 1, 2, 3]);
do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
}
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_edge_cases() {
use super::*;
let mut rng = crate::test::rng(413);
// Case 1: One of the weights is 0
let choices = [('a', 2), ('b', 1), ('c', 0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(!result.iter().any(|val| val.0 == 'c'));
}
// Case 2: All of the weights are 0
let choices = [('a', 0), ('b', 0), ('c', 0)];
assert_eq!(choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap().count(), 2);
// Case 3: Negative weights
let choices = [('a', -1), ('b', 1), ('c', 1)];
assert_eq!(
choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap_err(),
WeightedError::InvalidWeight
);
// Case 4: Empty list
let choices = [];
assert_eq!(choices
.choose_multiple_weighted(&mut rng, 0, |_: &()| 0)
.unwrap().count(), 0);
// Case 5: NaN weights
let choices = [('a', core::f64::NAN), ('b', 1.0), ('c', 1.0)];
assert_eq!(
choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap_err(),
WeightedError::InvalidWeight
);
// Case 6: +infinity weights
let choices = [('a', core::f64::INFINITY), ('b', 1.0), ('c', 1.0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(result.iter().any(|val| val.0 == 'a'));
}
// Case 7: -infinity weights
let choices = [('a', core::f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
assert_eq!(
choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap_err(),
WeightedError::InvalidWeight
);
// Case 8: -0 weights
let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
assert!(choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.is_ok());
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_distributions() {
use super::*;
// The theoretical probabilities of the different outcomes are:
// AB: 0.5 * 0.5 = 0.250
// AC: 0.5 * 0.5 = 0.250
// BA: 0.25 * 0.67 = 0.167
// BC: 0.25 * 0.33 = 0.082
// CA: 0.25 * 0.67 = 0.167
// CB: 0.25 * 0.33 = 0.082
let choices = [('a', 2), ('b', 1), ('c', 1)];
let mut rng = crate::test::rng(414);
let mut results = [0i32; 3];
let expected_results = [4167, 4167, 1666];
for _ in 0..10000 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
match (result[0].0, result[1].0) {
('a', 'b') | ('b', 'a') => {
results[0] += 1;
}
('a', 'c') | ('c', 'a') => {
results[1] += 1;
}
('b', 'c') | ('c', 'b') => {
results[2] += 1;
}
(_, _) => panic!("unexpected result"),
}
}
let mut diffs = results
.iter()
.zip(&expected_results)
.map(|(a, b)| (a - b).abs());
assert!(!diffs.any(|deviation| deviation > 100));
}
}