proptest/
sample.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
//-
// Copyright 2017, 2018 Jason Lingle
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Strategies for generating values by taking samples of collections.
//!
//! Note that the strategies in this module are not native combinators; that
//! is, the input collection is not itself a strategy, but is rather fixed when
//! the strategy is created.

use crate::std_facade::{Arc, Cow, Vec};
use core::fmt;
use core::mem;
use core::ops::Range;
use core::u64;

use rand::Rng;

use crate::bits::{self, BitSetValueTree, SampledBitSetStrategy, VarBitSet};
use crate::num;
use crate::strategy::*;
use crate::test_runner::*;

/// Re-exported to make usage more ergonomic.
pub use crate::collection::{size_range, SizeRange};

/// Sample subsequences whose size are within `size` from the given collection
/// `values`.
///
/// A subsequence is a subset of the elements in a collection in the order they
/// occur in that collection. The elements are not chosen to be contiguous.
///
/// This is roughly analogous to `rand::sample`, except that it guarantees that
/// the order is preserved.
///
/// `values` may be a static slice or a `Vec`.
///
/// ## Panics
///
/// Panics if the maximum size implied by `size` is larger than the size of
/// `values`.
///
/// Panics if `size` is a zero-length range.
pub fn subsequence<T: Clone + 'static>(
    values: impl Into<Cow<'static, [T]>>,
    size: impl Into<SizeRange>,
) -> Subsequence<T> {
    let values = values.into();
    let len = values.len();
    let size = size.into();

    size.assert_nonempty();
    assert!(
        size.end_incl() <= len,
        "Maximum size of subsequence {} exceeds length of input {}",
        size.end_incl(),
        len
    );
    Subsequence {
        values: Arc::new(values),
        bit_strategy: bits::varsize::sampled(size, 0..len),
    }
}

/// Strategy to generate `Vec`s by sampling a subsequence from another
/// collection.
///
/// This is created by the `subsequence` function in the same module.
#[derive(Debug, Clone)]
#[must_use = "strategies do nothing unless used"]
pub struct Subsequence<T: Clone + 'static> {
    values: Arc<Cow<'static, [T]>>,
    bit_strategy: SampledBitSetStrategy<VarBitSet>,
}

impl<T: fmt::Debug + Clone + 'static> Strategy for Subsequence<T> {
    type Tree = SubsequenceValueTree<T>;
    type Value = Vec<T>;

    fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
        Ok(SubsequenceValueTree {
            values: Arc::clone(&self.values),
            inner: self.bit_strategy.new_tree(runner)?,
        })
    }
}

/// `ValueTree` type for `Subsequence`.
#[derive(Debug, Clone)]
pub struct SubsequenceValueTree<T: Clone + 'static> {
    values: Arc<Cow<'static, [T]>>,
    inner: BitSetValueTree<VarBitSet>,
}

impl<T: fmt::Debug + Clone + 'static> ValueTree for SubsequenceValueTree<T> {
    type Value = Vec<T>;

    fn current(&self) -> Self::Value {
        let inner = self.inner.current();
        let ret = inner.iter().map(|ix| self.values[ix].clone()).collect();
        ret
    }

    fn simplify(&mut self) -> bool {
        self.inner.simplify()
    }

    fn complicate(&mut self) -> bool {
        self.inner.complicate()
    }
}

#[derive(Debug, Clone)]
struct SelectMapFn<T: Clone + 'static>(Arc<Cow<'static, [T]>>);

impl<T: fmt::Debug + Clone + 'static> statics::MapFn<usize> for SelectMapFn<T> {
    type Output = T;

    fn apply(&self, ix: usize) -> T {
        self.0[ix].clone()
    }
}

opaque_strategy_wrapper! {
    /// Strategy to produce one value from a fixed collection of options.
    ///
    /// Created by the `select()` in the same module.
    #[derive(Clone, Debug)]
    pub struct Select[<T>][where T : Clone + fmt::Debug + 'static](
        statics::Map<Range<usize>, SelectMapFn<T>>)
        -> SelectValueTree<T>;
    /// `ValueTree` corresponding to `Select`.
    #[derive(Clone, Debug)]
    pub struct SelectValueTree[<T>][where T : Clone + fmt::Debug + 'static](
        statics::Map<num::usize::BinarySearch, SelectMapFn<T>>)
        -> T;
}

/// Create a strategy which uniformly selects one value from `values`.
///
/// `values` should be a `&'static [T]` or a `Vec<T>`, or potentially another
/// type that can be coerced to `Cow<'static,[T]>`.
///
/// This is largely equivalent to making a `Union` of a bunch of `Just`
/// strategies, but is substantially more efficient and shrinks by binary
/// search.
///
/// If `values` is also to be generated by a strategy, see
/// [`Index`](struct.Index.html) for a more efficient way to select values than
/// using `prop_flat_map()`.
pub fn select<T: Clone + fmt::Debug + 'static>(
    values: impl Into<Cow<'static, [T]>>,
) -> Select<T> {
    let cow = values.into();

    Select(statics::Map::new(0..cow.len(), SelectMapFn(Arc::new(cow))))
}

/// A stand-in for an index into a slice or similar collection or conceptually
/// similar things.
///
/// At the lowest level, `Index` is a mechanism for generating `usize` values
/// in the range [0..N), for some N whose value is not known until it is
/// needed. (Contrast with using `0..N` itself as a strategy, where you need to
/// know N when you define the strategy.)
///
/// For any upper bound, the actual index produced by an `Index` is the same no
/// matter how many times it is used. Different upper bounds will produce
/// different but not independent values.
///
/// Shrinking will cause the index to binary search through the underlying
/// collection(s) it is used to sample.
///
/// Note that `Index` _cannot_ currently be used as a slice index (e.g.,
/// `slice[index]`) due to the trait coherence rules.
///
/// ## Example
///
/// If the collection itself being indexed is itself generated by a strategy,
/// you can make separately define that strategy and a strategy generating one
/// or more `Index`es and then join the two after input generation, avoiding a
/// call to `prop_flat_map()`.
///
/// ```
/// use proptest::prelude::*;
///
/// proptest! {
///     # /*
///     #[test]
///     # */
///     fn my_test(
///         names in prop::collection::vec("[a-z]+", 10..20),
///         indices in prop::collection::vec(any::<prop::sample::Index>(), 5..10)
///     ) {
///         // We now have Vec<String> of ten to twenty names, and a Vec<Index>
///         // of five to ten indices and can combine them however we like.
///         for index in &indices {
///             println!("Accessing item by index: {}", names[index.index(names.len())]);
///             println!("Accessing item by convenience method: {}", index.get(&names));
///         }
///         // Test stuff...
///     }
/// }
/// #
/// # fn main() { my_test(); }
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Index(usize);

impl Index {
    /// Return the real index that would be used to index a collection of size `size`.
    ///
    /// ## Panics
    ///
    /// Panics if `size == 0`.
    pub fn index(&self, size: usize) -> usize {
        assert!(size > 0, "Attempt to use `Index` with 0-size collection");

        // No platforms currently have `usize` wider than 64 bits, so `u128` is
        // sufficient to hold the result of a full multiply, letting us do a
        // simple fixed-point multiply.
        ((size as u128) * (self.0 as u128) >> (mem::size_of::<usize>() * 8))
            as usize
    }

    /// Return a reference to the element in `slice` that this `Index` refers to.
    ///
    /// A shortcut for `&slice[index.index(slice.len())]`.
    pub fn get<'a, T>(&self, slice: &'a [T]) -> &'a T {
        &slice[self.index(slice.len())]
    }

    /// Return a mutable reference to the element in `slice` that this `Index`
    /// refers to.
    ///
    /// A shortcut for `&mut slice[index.index(slice.len())]`.
    pub fn get_mut<'a, T>(&self, slice: &'a mut [T]) -> &'a mut T {
        let ix = self.index(slice.len());
        &mut slice[ix]
    }
}

// This impl is handy for generic code over any type that exposes an internal `Index` -- with it,
// a plain `Index` can be passed in as well.
impl AsRef<Index> for Index {
    fn as_ref(&self) -> &Index {
        self
    }
}

mapfn! {
    [] fn UsizeToIndex[](raw: usize) -> Index {
        Index(raw)
    }
}

opaque_strategy_wrapper! {
    /// Strategy to create `Index`es.
    ///
    /// Created via `any::<Index>()`.
    #[derive(Clone, Debug)]
    pub struct IndexStrategy[][](
        statics::Map<num::usize::Any, UsizeToIndex>)
        -> IndexValueTree;
    /// `ValueTree` corresponding to `IndexStrategy`.
    #[derive(Clone, Debug)]
    pub struct IndexValueTree[][](
        statics::Map<num::usize::BinarySearch,UsizeToIndex>)
        -> Index;
}

impl IndexStrategy {
    pub(crate) fn new() -> Self {
        IndexStrategy(statics::Map::new(num::usize::ANY, UsizeToIndex))
    }
}

/// A value for picking random values out of iterators.
///
/// This is, in a sense, a more flexible variant of
/// [`Index`](struct.Index.html) in that it can operate on arbitrary
/// `IntoIterator` values.
///
/// Initially, the selection is roughly uniform, with a very slight bias
/// towards items earlier in the iterator.
///
/// Shrinking causes the selection to move toward items earlier in the
/// iterator, ultimately settling on the very first, but this currently happens
/// in a very haphazard way that may fail to find the earliest failing input.
///
/// ## Example
///
/// Generate a non-indexable collection and a value to pick out of it.
///
/// ```
/// use proptest::prelude::*;
///
/// proptest! {
///     # /*
///     #[test]
///     # */
///     fn my_test(
///         names in prop::collection::hash_set("[a-z]+", 10..20),
///         selector in any::<prop::sample::Selector>()
///     ) {
///         println!("Selected name: {}", selector.select(&names));
///         // Test stuff...
///     }
/// }
/// #
/// # fn main() { my_test(); }
/// ```
#[derive(Clone, Debug)]
pub struct Selector {
    rng: TestRng,
    bias_increment: u64,
}

/// Strategy to create `Selector`s.
///
/// Created via `any::<Selector>()`.
#[derive(Debug)]
pub struct SelectorStrategy {
    _nonexhaustive: (),
}

/// `ValueTree` corresponding to `SelectorStrategy`.
#[derive(Debug)]
pub struct SelectorValueTree {
    rng: TestRng,
    reverse_bias_increment: num::u64::BinarySearch,
}

impl SelectorStrategy {
    pub(crate) fn new() -> Self {
        SelectorStrategy { _nonexhaustive: () }
    }
}

impl Strategy for SelectorStrategy {
    type Tree = SelectorValueTree;
    type Value = Selector;

    fn new_tree(&self, runner: &mut TestRunner) -> NewTree<Self> {
        Ok(SelectorValueTree {
            rng: runner.new_rng(),
            reverse_bias_increment: num::u64::BinarySearch::new(u64::MAX),
        })
    }
}

impl ValueTree for SelectorValueTree {
    type Value = Selector;

    fn current(&self) -> Selector {
        Selector {
            rng: self.rng.clone(),
            bias_increment: u64::MAX - self.reverse_bias_increment.current(),
        }
    }

    fn simplify(&mut self) -> bool {
        self.reverse_bias_increment.simplify()
    }

    fn complicate(&mut self) -> bool {
        self.reverse_bias_increment.complicate()
    }
}

impl Selector {
    /// Pick a random element from iterable `it`.
    ///
    /// The selection is unaffected by the elements themselves, and is
    /// dependent only on the actual length of `it`.
    ///
    /// `it` is always iterated completely.
    ///
    /// ## Panics
    ///
    /// Panics if `it` has no elements.
    pub fn select<T: IntoIterator>(&self, it: T) -> T::Item {
        self.try_select(it).expect("select from empty iterator")
    }

    /// Pick a random element from iterable `it`.
    ///
    /// Returns `None` if `it` is empty.
    ///
    /// The selection is unaffected by the elements themselves, and is
    /// dependent only on the actual length of `it`.
    ///
    /// `it` is always iterated completely.
    pub fn try_select<T: IntoIterator>(&self, it: T) -> Option<T::Item> {
        let mut bias = 0u64;
        let mut min_score = 0;
        let mut best = None;
        let mut rng = self.rng.clone();

        for item in it {
            let score = bias.saturating_add(rng.gen());
            if best.is_none() || score < min_score {
                best = Some(item);
                min_score = score;
            }

            bias = bias.saturating_add(self.bias_increment);
        }

        best
    }
}

#[cfg(test)]
mod test {
    use crate::std_facade::BTreeSet;

    use super::*;
    use crate::arbitrary::any;

    #[test]
    fn sample_slice() {
        static VALUES: &[usize] = &[0, 1, 2, 3, 4, 5, 6, 7];
        let mut size_counts = [0; 8];
        let mut value_counts = [0; 8];

        let mut runner = TestRunner::deterministic();
        let input = subsequence(VALUES, 3..7);

        for _ in 0..2048 {
            let value = input.new_tree(&mut runner).unwrap().current();
            // Generated the correct number of items
            assert!(value.len() >= 3 && value.len() < 7);
            // Chose distinct items
            assert_eq!(
                value.len(),
                value.iter().cloned().collect::<BTreeSet<_>>().len()
            );
            // Values are in correct order
            let mut sorted = value.clone();
            sorted.sort();
            assert_eq!(sorted, value);

            size_counts[value.len()] += 1;

            for value in value {
                value_counts[value] += 1;
            }
        }

        for i in 3..7 {
            assert!(
                size_counts[i] >= 256 && size_counts[i] < 1024,
                "size {} was chosen {} times",
                i,
                size_counts[i]
            );
        }

        for (ix, &v) in value_counts.iter().enumerate() {
            assert!(
                v >= 1024 && v < 1500,
                "Value {} was chosen {} times",
                ix,
                v
            );
        }
    }

    #[test]
    fn sample_vec() {
        // Just test that the types work out
        let values = vec![0, 1, 2, 3, 4];

        let mut runner = TestRunner::deterministic();
        let input = subsequence(values, 1..3);

        let _ = input.new_tree(&mut runner).unwrap().current();
    }

    #[test]
    fn test_select() {
        let values = vec![0, 1, 2, 3, 4, 5, 6, 7];
        let mut counts = [0; 8];

        let mut runner = TestRunner::deterministic();
        let input = select(values);

        for _ in 0..1024 {
            counts[input.new_tree(&mut runner).unwrap().current()] += 1;
        }

        for (ix, &count) in counts.iter().enumerate() {
            assert!(
                count >= 64 && count < 256,
                "Generated value {} {} times",
                ix,
                count
            );
        }
    }

    #[test]
    fn test_sample_sanity() {
        check_strategy_sanity(subsequence(vec![0, 1, 2, 3, 4], 1..3), None);
    }

    #[test]
    fn test_select_sanity() {
        check_strategy_sanity(select(vec![0, 1, 2, 3, 4]), None);
    }

    #[test]
    fn subseq_empty_vec_works() {
        let mut runner = TestRunner::deterministic();
        let input = subsequence(Vec::<()>::new(), 0..1);
        assert_eq!(
            Vec::<()>::new(),
            input.new_tree(&mut runner).unwrap().current()
        );
    }

    #[test]
    fn subseq_full_vec_works() {
        let v = vec![1u32, 2u32, 3u32];
        let mut runner = TestRunner::deterministic();
        let input = subsequence(v.clone(), 3);
        assert_eq!(v, input.new_tree(&mut runner).unwrap().current());
    }

    #[test]
    fn index_works() {
        let mut runner = TestRunner::deterministic();
        let input = any::<Index>();
        let col = vec!["foo", "bar", "baz"];
        let mut seen = BTreeSet::new();

        for _ in 0..16 {
            let mut tree = input.new_tree(&mut runner).unwrap();
            seen.insert(*tree.current().get(&col));

            while tree.simplify() {}

            assert_eq!("foo", *tree.current().get(&col));
        }

        assert_eq!(col.into_iter().collect::<BTreeSet<_>>(), seen);
    }

    #[test]
    fn selector_works() {
        let mut runner = TestRunner::deterministic();
        let input = any::<Selector>();
        let col: BTreeSet<&str> =
            vec!["foo", "bar", "baz"].into_iter().collect();
        let mut seen = BTreeSet::new();

        for _ in 0..16 {
            let mut tree = input.new_tree(&mut runner).unwrap();
            seen.insert(*tree.current().select(&col));

            while tree.simplify() {}

            assert_eq!("bar", *tree.current().select(&col));
        }

        assert_eq!(col, seen);
    }
}