petgraph/visit/dfsvisit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
use crate::visit::IntoNeighbors;
use crate::visit::{VisitMap, Visitable};
/// Strictly monotonically increasing event time for a depth first search.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, Ord, Default, Hash)]
pub struct Time(pub usize);
/// A depth first search (DFS) visitor event.
#[derive(Copy, Clone, Debug)]
pub enum DfsEvent<N> {
Discover(N, Time),
/// An edge of the tree formed by the traversal.
TreeEdge(N, N),
/// An edge to an already visited node.
BackEdge(N, N),
/// A cross or forward edge.
///
/// For an edge *(u, v)*, if the discover time of *v* is greater than *u*,
/// then it is a forward edge, else a cross edge.
CrossForwardEdge(N, N),
/// All edges from a node have been reported.
Finish(N, Time),
}
/// Return if the expression is a break value, execute the provided statement
/// if it is a prune value.
macro_rules! try_control {
($e:expr, $p:stmt) => {
try_control!($e, $p, ());
};
($e:expr, $p:stmt, $q:stmt) => {
match $e {
x => {
if x.should_break() {
return x;
} else if x.should_prune() {
$p
} else {
$q
}
}
}
};
}
/// Control flow for `depth_first_search` callbacks.
#[derive(Copy, Clone, Debug)]
pub enum Control<B> {
/// Continue the DFS traversal as normal.
Continue,
/// Prune the current node from the DFS traversal. No more edges from this
/// node will be reported to the callback. A `DfsEvent::Finish` for this
/// node will still be reported. This can be returned in response to any
/// `DfsEvent`, except `Finish`, which will panic.
Prune,
/// Stop the DFS traversal and return the provided value.
Break(B),
}
impl<B> Control<B> {
pub fn breaking() -> Control<()> {
Control::Break(())
}
/// Get the value in `Control::Break(_)`, if present.
pub fn break_value(self) -> Option<B> {
match self {
Control::Continue | Control::Prune => None,
Control::Break(b) => Some(b),
}
}
}
/// Control flow for callbacks.
///
/// The empty return value `()` is equivalent to continue.
pub trait ControlFlow {
fn continuing() -> Self;
fn should_break(&self) -> bool;
fn should_prune(&self) -> bool;
}
impl ControlFlow for () {
fn continuing() {}
#[inline]
fn should_break(&self) -> bool {
false
}
#[inline]
fn should_prune(&self) -> bool {
false
}
}
impl<B> ControlFlow for Control<B> {
fn continuing() -> Self {
Control::Continue
}
fn should_break(&self) -> bool {
if let Control::Break(_) = *self {
true
} else {
false
}
}
fn should_prune(&self) -> bool {
match *self {
Control::Prune => true,
Control::Continue | Control::Break(_) => false,
}
}
}
impl<C: ControlFlow, E> ControlFlow for Result<C, E> {
fn continuing() -> Self {
Ok(C::continuing())
}
fn should_break(&self) -> bool {
if let Ok(ref c) = *self {
c.should_break()
} else {
true
}
}
fn should_prune(&self) -> bool {
if let Ok(ref c) = *self {
c.should_prune()
} else {
false
}
}
}
/// The default is `Continue`.
impl<B> Default for Control<B> {
fn default() -> Self {
Control::Continue
}
}
/// A recursive depth first search.
///
/// Starting points are the nodes in the iterator `starts` (specify just one
/// start vertex *x* by using `Some(x)`).
///
/// The traversal emits discovery and finish events for each reachable vertex,
/// and edge classification of each reachable edge. `visitor` is called for each
/// event, see [`DfsEvent`][de] for possible values.
///
/// The return value should implement the trait `ControlFlow`, and can be used to change
/// the control flow of the search.
///
/// `Control` Implements `ControlFlow` such that `Control::Continue` resumes the search.
/// `Control::Break` will stop the visit early, returning the contained value.
/// `Control::Prune` will stop traversing any additional edges from the current
/// node and proceed immediately to the `Finish` event.
///
/// There are implementations of `ControlFlow` for `()`, and `Result<C, E>` where
/// `C: ControlFlow`. The implementation for `()` will continue until finished.
/// For `Result`, upon encountering an `E` it will break, otherwise acting the same as `C`.
///
/// ***Panics** if you attempt to prune a node from its `Finish` event.
///
/// [de]: enum.DfsEvent.html
///
/// # Example returning `Control`.
///
/// Find a path from vertex 0 to 5, and exit the visit as soon as we reach
/// the goal vertex.
///
/// ```
/// use petgraph::prelude::*;
/// use petgraph::graph::node_index as n;
/// use petgraph::visit::depth_first_search;
/// use petgraph::visit::{DfsEvent, Control};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[
/// (0, 1), (0, 2), (0, 3),
/// (1, 3),
/// (2, 3), (2, 4),
/// (4, 0), (4, 5),
/// ]);
///
/// // record each predecessor, mapping node → node
/// let mut predecessor = vec![NodeIndex::end(); gr.node_count()];
/// let start = n(0);
/// let goal = n(5);
/// depth_first_search(&gr, Some(start), |event| {
/// if let DfsEvent::TreeEdge(u, v) = event {
/// predecessor[v.index()] = u;
/// if v == goal {
/// return Control::Break(v);
/// }
/// }
/// Control::Continue
/// });
///
/// let mut next = goal;
/// let mut path = vec![next];
/// while next != start {
/// let pred = predecessor[next.index()];
/// path.push(pred);
/// next = pred;
/// }
/// path.reverse();
/// assert_eq!(&path, &[n(0), n(2), n(4), n(5)]);
/// ```
///
/// # Example returning a `Result`.
/// ```
/// use petgraph::graph::node_index as n;
/// use petgraph::prelude::*;
/// use petgraph::visit::depth_first_search;
/// use petgraph::visit::{DfsEvent, Time};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[(0, 1), (1, 2), (1, 1), (2, 1)]);
/// let start = n(0);
/// let mut back_edges = 0;
/// let mut discover_time = 0;
/// // Stop the search, the first time a BackEdge is encountered.
/// let result = depth_first_search(&gr, Some(start), |event| {
/// match event {
/// // In the cases where Ok(()) is returned,
/// // Result falls back to the implementation of Control on the value ().
/// // In the case of (), this is to always return Control::Continue.
/// // continuing the search.
/// DfsEvent::Discover(_, Time(t)) => {
/// discover_time = t;
/// Ok(())
/// }
/// DfsEvent::BackEdge(_, _) => {
/// back_edges += 1;
/// // the implementation of ControlFlow for Result,
/// // treats this Err value as Continue::Break
/// Err(event)
/// }
/// _ => Ok(()),
/// }
/// });
///
/// // Even though the graph has more than one cycle,
/// // The number of back_edges visited by the search should always be 1.
/// assert_eq!(back_edges, 1);
/// println!("discover time:{:?}", discover_time);
/// println!("number of backedges encountered: {}", back_edges);
/// println!("back edge: {:?}", result);
/// ```
pub fn depth_first_search<G, I, F, C>(graph: G, starts: I, mut visitor: F) -> C
where
G: IntoNeighbors + Visitable,
I: IntoIterator<Item = G::NodeId>,
F: FnMut(DfsEvent<G::NodeId>) -> C,
C: ControlFlow,
{
let time = &mut Time(0);
let discovered = &mut graph.visit_map();
let finished = &mut graph.visit_map();
for start in starts {
try_control!(
dfs_visitor(graph, start, &mut visitor, discovered, finished, time),
unreachable!()
);
}
C::continuing()
}
fn dfs_visitor<G, F, C>(
graph: G,
u: G::NodeId,
visitor: &mut F,
discovered: &mut G::Map,
finished: &mut G::Map,
time: &mut Time,
) -> C
where
G: IntoNeighbors + Visitable,
F: FnMut(DfsEvent<G::NodeId>) -> C,
C: ControlFlow,
{
if !discovered.visit(u) {
return C::continuing();
}
try_control!(
visitor(DfsEvent::Discover(u, time_post_inc(time))),
{},
for v in graph.neighbors(u) {
if !discovered.is_visited(&v) {
try_control!(visitor(DfsEvent::TreeEdge(u, v)), continue);
try_control!(
dfs_visitor(graph, v, visitor, discovered, finished, time),
unreachable!()
);
} else if !finished.is_visited(&v) {
try_control!(visitor(DfsEvent::BackEdge(u, v)), continue);
} else {
try_control!(visitor(DfsEvent::CrossForwardEdge(u, v)), continue);
}
}
);
let first_finish = finished.visit(u);
debug_assert!(first_finish);
try_control!(
visitor(DfsEvent::Finish(u, time_post_inc(time))),
panic!("Pruning on the `DfsEvent::Finish` is not supported!")
);
C::continuing()
}
fn time_post_inc(x: &mut Time) -> Time {
let v = *x;
x.0 += 1;
v
}