petgraph/algo/
matching.rs

1use alloc::{collections::VecDeque, vec, vec::Vec};
2use core::hash::Hash;
3
4use crate::visit::{
5    EdgeRef, GraphBase, IntoEdges, IntoNeighbors, IntoNodeIdentifiers, NodeCount, NodeIndexable,
6    VisitMap, Visitable,
7};
8
9/// Computed
10/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
11/// of the graph.
12pub struct Matching<G: GraphBase> {
13    graph: G,
14    mate: Vec<Option<G::NodeId>>,
15    n_edges: usize,
16}
17
18impl<G> Matching<G>
19where
20    G: GraphBase,
21{
22    fn new(graph: G, mate: Vec<Option<G::NodeId>>, n_edges: usize) -> Self {
23        Self {
24            graph,
25            mate,
26            n_edges,
27        }
28    }
29}
30
31impl<G> Matching<G>
32where
33    G: NodeIndexable,
34{
35    /// Gets the matched counterpart of given node, if there is any.
36    ///
37    /// Returns `None` if the node is not matched or does not exist.
38    pub fn mate(&self, node: G::NodeId) -> Option<G::NodeId> {
39        self.mate.get(self.graph.to_index(node)).and_then(|&id| id)
40    }
41
42    /// Iterates over all edges from the matching.
43    ///
44    /// An edge is represented by its endpoints. The graph is considered
45    /// undirected and every pair of matched nodes is reported only once.
46    pub fn edges(&self) -> MatchedEdges<'_, G> {
47        MatchedEdges {
48            graph: &self.graph,
49            mate: self.mate.as_slice(),
50            current: 0,
51        }
52    }
53
54    /// Iterates over all nodes from the matching.
55    pub fn nodes(&self) -> MatchedNodes<'_, G> {
56        MatchedNodes {
57            graph: &self.graph,
58            mate: self.mate.as_slice(),
59            current: 0,
60        }
61    }
62
63    /// Returns `true` if given edge is in the matching, or `false` otherwise.
64    ///
65    /// If any of the nodes does not exist, `false` is returned.
66    pub fn contains_edge(&self, a: G::NodeId, b: G::NodeId) -> bool {
67        match self.mate(a) {
68            Some(mate) => mate == b,
69            None => false,
70        }
71    }
72
73    /// Returns `true` if given node is in the matching, or `false` otherwise.
74    ///
75    /// If the node does not exist, `false` is returned.
76    pub fn contains_node(&self, node: G::NodeId) -> bool {
77        self.mate(node).is_some()
78    }
79
80    /// Gets the number of matched **edges**.
81    pub fn len(&self) -> usize {
82        self.n_edges
83    }
84
85    /// Returns `true` if the number of matched **edges** is 0.
86    pub fn is_empty(&self) -> bool {
87        self.len() == 0
88    }
89}
90
91impl<G> Matching<G>
92where
93    G: NodeCount,
94{
95    /// Returns `true` if the matching is perfect.
96    ///
97    /// A matching is
98    /// [*perfect*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
99    /// if every node in the graph is incident to an edge from the matching.
100    pub fn is_perfect(&self) -> bool {
101        let n_nodes = self.graph.node_count();
102        n_nodes % 2 == 0 && self.n_edges == n_nodes / 2
103    }
104}
105
106trait WithDummy: NodeIndexable {
107    fn dummy_idx(&self) -> usize;
108    /// Convert `i` to a node index, returns None for the dummy node
109    fn try_from_index(&self, i: usize) -> Option<Self::NodeId>;
110}
111
112impl<G: NodeIndexable> WithDummy for G {
113    fn dummy_idx(&self) -> usize {
114        // Gabow numbers the vertices from 1 to n, and uses 0 as the dummy
115        // vertex. Our vertex indices are zero-based and so we use the node
116        // bound as the dummy node.
117        self.node_bound()
118    }
119
120    fn try_from_index(&self, i: usize) -> Option<Self::NodeId> {
121        if i != self.dummy_idx() {
122            Some(self.from_index(i))
123        } else {
124            None
125        }
126    }
127}
128
129pub struct MatchedNodes<'a, G: GraphBase> {
130    graph: &'a G,
131    mate: &'a [Option<G::NodeId>],
132    current: usize,
133}
134
135impl<G> Iterator for MatchedNodes<'_, G>
136where
137    G: NodeIndexable,
138{
139    type Item = G::NodeId;
140
141    fn next(&mut self) -> Option<Self::Item> {
142        while self.current != self.mate.len() {
143            let current = self.current;
144            self.current += 1;
145
146            if self.mate[current].is_some() {
147                return Some(self.graph.from_index(current));
148            }
149        }
150
151        None
152    }
153}
154
155pub struct MatchedEdges<'a, G: GraphBase> {
156    graph: &'a G,
157    mate: &'a [Option<G::NodeId>],
158    current: usize,
159}
160
161impl<G> Iterator for MatchedEdges<'_, G>
162where
163    G: NodeIndexable,
164{
165    type Item = (G::NodeId, G::NodeId);
166
167    fn next(&mut self) -> Option<Self::Item> {
168        while self.current != self.mate.len() {
169            let current = self.current;
170            self.current += 1;
171
172            if let Some(mate) = self.mate[current] {
173                // Check if the mate is a node after the current one. If not, then
174                // do not report that edge since it has been already reported (the
175                // graph is considered undirected).
176                if self.graph.to_index(mate) > current {
177                    let this = self.graph.from_index(current);
178                    return Some((this, mate));
179                }
180            }
181        }
182
183        None
184    }
185}
186
187/// Compute a [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using a
188/// greedy heuristic.
189///
190/// The input graph is treated as if undirected. The underlying heuristic is
191/// unspecified, but is guaranteed to be bounded by **O(|V| + |E|)**. No
192/// guarantees about the output are given other than that it is a valid
193/// matching.
194///
195/// If you require a maximum matching, use [`maximum_matching`][1] function
196/// instead.
197///
198/// # Arguments
199/// * `graph`: an undirected graph.
200///
201/// # Returns
202/// * [`struct@Matching`] calculated using greedy heuristic.
203///
204/// # Complexity
205/// * Time complexity: **O(|V| + |E|)**.
206/// * Auxiliary space: **O(|V|)**.
207///
208/// where **|V|** is the number of nodes and **|E|** is the number of edges.
209///
210/// [1]: fn.maximum_matching.html
211pub fn greedy_matching<G>(graph: G) -> Matching<G>
212where
213    G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
214    G::NodeId: Eq + Hash,
215    G::EdgeId: Eq + Hash,
216{
217    let (mates, n_edges) = greedy_matching_inner(&graph);
218    Matching::new(graph, mates, n_edges)
219}
220
221#[inline]
222fn greedy_matching_inner<G>(graph: &G) -> (Vec<Option<G::NodeId>>, usize)
223where
224    G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
225{
226    let mut mate = vec![None; graph.node_bound()];
227    let mut n_edges = 0;
228    let visited = &mut graph.visit_map();
229
230    for start in graph.node_identifiers() {
231        let mut last = Some(start);
232
233        // Function non_backtracking_dfs does not expand the node if it has been
234        // already visited.
235        non_backtracking_dfs(graph, start, visited, |next| {
236            // Alternate matched and unmatched edges.
237            if let Some(pred) = last.take() {
238                mate[graph.to_index(pred)] = Some(next);
239                mate[graph.to_index(next)] = Some(pred);
240                n_edges += 1;
241            } else {
242                last = Some(next);
243            }
244        });
245    }
246
247    (mate, n_edges)
248}
249
250fn non_backtracking_dfs<G, F>(graph: &G, source: G::NodeId, visited: &mut G::Map, mut visitor: F)
251where
252    G: Visitable + IntoNeighbors,
253    F: FnMut(G::NodeId),
254{
255    if visited.visit(source) {
256        for target in graph.neighbors(source) {
257            if !visited.is_visited(&target) {
258                visitor(target);
259                non_backtracking_dfs(graph, target, visited, visitor);
260
261                // Non-backtracking traversal, stop iterating over the
262                // neighbors.
263                break;
264            }
265        }
266    }
267}
268
269#[derive(Clone, Copy, Default)]
270enum Label<G: GraphBase> {
271    #[default]
272    None,
273    Start,
274    // If node v is outer node, then label(v) = w is another outer node on path
275    // from v to start u.
276    Vertex(G::NodeId),
277    // If node v is outer node, then label(v) = (r, s) are two outer vertices
278    // (connected by an edge)
279    Edge(G::EdgeId, [G::NodeId; 2]),
280    // Flag is a special label used in searching for the join vertex of two
281    // paths.
282    Flag(G::EdgeId),
283}
284
285impl<G: GraphBase> Label<G> {
286    fn is_outer(&self) -> bool {
287        self != &Label::None && !matches!(self, Label::Flag(_))
288    }
289
290    fn is_inner(&self) -> bool {
291        !self.is_outer()
292    }
293
294    fn to_vertex(&self) -> Option<G::NodeId> {
295        match *self {
296            Label::Vertex(v) => Some(v),
297            _ => None,
298        }
299    }
300
301    fn is_flagged(&self, edge: G::EdgeId) -> bool {
302        matches!(self, Label::Flag(flag) if flag == &edge)
303    }
304}
305
306impl<G: GraphBase> PartialEq for Label<G> {
307    fn eq(&self, other: &Self) -> bool {
308        match (self, other) {
309            (Label::None, Label::None) => true,
310            (Label::Start, Label::Start) => true,
311            (Label::Vertex(v1), Label::Vertex(v2)) => v1 == v2,
312            (Label::Edge(e1, _), Label::Edge(e2, _)) => e1 == e2,
313            (Label::Flag(e1), Label::Flag(e2)) => e1 == e2,
314            _ => false,
315        }
316    }
317}
318
319/// Compute the [*maximum matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using
320/// [Gabow's algorithm][1].
321///
322/// [1]: https://dl.acm.org/doi/10.1145/321941.321942
323///
324/// The input graph is treated as if undirected. The algorithm runs in
325/// **O(|V|³)**. An algorithm with a better time complexity might be used in the
326/// future.
327///
328/// **Panics** if `g.node_bound()` is `usize::MAX`.
329///
330/// # Arguments
331/// * `graph`: an undirected graph.
332///
333/// # Returns
334/// * [`struct@Matching`]: computed maximum matching.
335///
336/// # Complexity
337/// * Time complexity: **O(|V|³)**.
338/// * Auxiliary space: **O(|V| + |E|)**.
339///
340/// where **|V|** is the number of nodes and **|E|** is the number of edges.
341///
342/// # Examples
343///
344/// ```
345/// use petgraph::prelude::*;
346/// use petgraph::algo::maximum_matching;
347///
348/// // The example graph:
349/// //
350/// //    +-- b ---- d ---- f
351/// //   /    |      |
352/// //  a     |      |
353/// //   \    |      |
354/// //    +-- c ---- e
355/// //
356/// // Maximum matching: { (a, b), (c, e), (d, f) }
357///
358/// let mut graph: UnGraph<(), ()> = UnGraph::new_undirected();
359/// let a = graph.add_node(());
360/// let b = graph.add_node(());
361/// let c = graph.add_node(());
362/// let d = graph.add_node(());
363/// let e = graph.add_node(());
364/// let f = graph.add_node(());
365/// graph.extend_with_edges(&[(a, b), (a, c), (b, c), (b, d), (c, e), (d, e), (d, f)]);
366///
367/// let matching = maximum_matching(&graph);
368/// assert!(matching.contains_edge(a, b));
369/// assert!(matching.contains_edge(c, e));
370/// assert_eq!(matching.mate(d), Some(f));
371/// assert_eq!(matching.mate(f), Some(d));
372/// ```
373pub fn maximum_matching<G>(graph: G) -> Matching<G>
374where
375    G: Visitable + NodeIndexable + IntoNodeIdentifiers + IntoEdges,
376{
377    // The dummy identifier needs an unused index
378    assert_ne!(
379        graph.node_bound(),
380        usize::MAX,
381        "The input graph capacity should be strictly less than core::usize::MAX."
382    );
383
384    // Greedy algorithm should create a fairly good initial matching. The hope
385    // is that it speeds up the computation by doing les work in the complex
386    // algorithm.
387    let (mut mate, mut n_edges) = greedy_matching_inner(&graph);
388
389    // Gabow's algorithm uses a dummy node in the mate array.
390    mate.push(None);
391    let len = graph.node_bound() + 1;
392    debug_assert_eq!(mate.len(), len);
393
394    let mut label: Vec<Label<G>> = vec![Label::None; len];
395    let mut first_inner = vec![usize::MAX; len];
396    let visited = &mut graph.visit_map();
397
398    // Queue will contain outer vertices that should be processed next.
399    // The queue is cleared after each iteration of the main loop.
400    let mut queue = VecDeque::new();
401
402    for start in 0..graph.node_bound() {
403        if mate[start].is_some() {
404            // The vertex is already matched. A start must be a free vertex.
405            continue;
406        }
407
408        // Begin search from the node.
409        label[start] = Label::Start;
410        first_inner[start] = graph.dummy_idx();
411        graph.reset_map(visited);
412
413        // start is never a dummy index
414        let start = graph.from_index(start);
415
416        // The start vertex is considered a first outer vertex on each iteration.
417        queue.push_back(start);
418        // Mark the start vertex so it is not processed repeatedly.
419        visited.visit(start);
420
421        'search: while let Some(outer_vertex) = queue.pop_front() {
422            for edge in graph.edges(outer_vertex) {
423                if edge.source() == edge.target() {
424                    // Ignore self-loops.
425                    continue;
426                }
427
428                let other_vertex = edge.target();
429                let other_idx = graph.to_index(other_vertex);
430
431                if mate[other_idx].is_none() && other_vertex != start {
432                    // An augmenting path was found. Augment the matching. If
433                    // `other` is actually the start node, then the augmentation
434                    // must not be performed, because the start vertex would be
435                    // incident to two edges, which violates the matching
436                    // property.
437                    mate[other_idx] = Some(outer_vertex);
438                    augment_path(&graph, outer_vertex, other_vertex, &mut mate, &label);
439                    n_edges += 1;
440
441                    // The path is augmented, so the start is no longer free
442                    // vertex. We need to begin with a new start.
443                    break 'search;
444                } else if label[other_idx].is_outer() {
445                    // The `other` is an outer vertex (a label has been set to
446                    // it). An odd cycle (blossom) was found. Assign this edge
447                    // as a label to all inner vertices in paths P(outer) and
448                    // P(other).
449                    find_join(
450                        &graph,
451                        edge,
452                        &mate,
453                        &mut label,
454                        &mut first_inner,
455                        |labeled| {
456                            if visited.visit(labeled) {
457                                queue.push_back(labeled);
458                            }
459                        },
460                    );
461                } else {
462                    let mate_vertex = mate[other_idx];
463                    let mate_idx = mate_vertex.map_or(graph.dummy_idx(), |id| graph.to_index(id));
464
465                    if label[mate_idx].is_inner() {
466                        // Mate of `other` vertex is inner (no label has been
467                        // set to it so far). But it actually is an outer vertex
468                        // (it is on a path to the start vertex that begins with
469                        // a matched edge, since it is a mate of `other`).
470                        // Assign the label of this mate to the `outer` vertex,
471                        // so the path for it can be reconstructed using `mate`
472                        // and this label.
473                        label[mate_idx] = Label::Vertex(outer_vertex);
474                        first_inner[mate_idx] = other_idx;
475                    }
476
477                    // Add the vertex to the queue only if it's not the dummy and this is its first
478                    // discovery.
479                    if let Some(mate_vertex) = mate_vertex {
480                        if visited.visit(mate_vertex) {
481                            queue.push_back(mate_vertex);
482                        }
483                    }
484                }
485            }
486        }
487
488        // Reset the labels. All vertices are inner for the next search.
489        for lbl in label.iter_mut() {
490            *lbl = Label::None;
491        }
492
493        queue.clear();
494    }
495
496    // Discard the dummy node.
497    mate.pop();
498
499    Matching::new(graph, mate, n_edges)
500}
501
502fn find_join<G, F>(
503    graph: &G,
504    edge: G::EdgeRef,
505    mate: &[Option<G::NodeId>],
506    label: &mut [Label<G>],
507    first_inner: &mut [usize],
508    mut visitor: F,
509) where
510    G: IntoEdges + NodeIndexable + Visitable,
511    F: FnMut(G::NodeId),
512{
513    // Simultaneously traverse the inner vertices on paths P(source) and
514    // P(target) to find a join vertex - an inner vertex that is shared by these
515    // paths.
516    let source = graph.to_index(edge.source());
517    let target = graph.to_index(edge.target());
518
519    let mut left = first_inner[source];
520    let mut right = first_inner[target];
521
522    if left == right {
523        // No vertices can be labeled, since both paths already refer to a
524        // common vertex - the join.
525        return;
526    }
527
528    // Flag the (first) inner vertices. This ensures that they are assigned the
529    // join as their first inner vertex.
530    let flag = Label::Flag(edge.id());
531    label[left] = flag;
532    label[right] = flag;
533
534    // Find the join.
535    let join = loop {
536        // Swap the sides. Do not swap if the right side is already finished.
537        if right != graph.dummy_idx() {
538            core::mem::swap(&mut left, &mut right);
539        }
540
541        // Set left to the next inner vertex in P(source) or P(target).
542        // The unwraps are safe because left is not the dummy node.
543        let left_mate = graph.to_index(mate[left].unwrap());
544        let next_inner = label[left_mate].to_vertex().unwrap();
545        left = first_inner[graph.to_index(next_inner)];
546
547        if !label[left].is_flagged(edge.id()) {
548            // The inner vertex is not flagged yet, so flag it.
549            label[left] = flag;
550        } else {
551            // The inner vertex is already flagged. It means that the other side
552            // had to visit it already. Therefore it is the join vertex.
553            break left;
554        }
555    };
556
557    // Label all inner vertices on P(source) and P(target) with the found join.
558    for endpoint in [source, target].iter().copied() {
559        let mut inner = first_inner[endpoint];
560        while inner != join {
561            // Notify the caller about labeling a vertex.
562            if let Some(ix) = graph.try_from_index(inner) {
563                visitor(ix);
564            }
565
566            label[inner] = Label::Edge(edge.id(), [edge.source(), edge.target()]);
567            first_inner[inner] = join;
568            let inner_mate = graph.to_index(mate[inner].unwrap());
569            let next_inner = label[inner_mate].to_vertex().unwrap();
570            inner = first_inner[graph.to_index(next_inner)];
571        }
572    }
573
574    for (vertex_idx, vertex_label) in label.iter().enumerate() {
575        // To all outer vertices that are on paths P(source) and P(target) until
576        // the join, se the join as their first inner vertex.
577        if vertex_idx != graph.dummy_idx()
578            && vertex_label.is_outer()
579            && label[first_inner[vertex_idx]].is_outer()
580        {
581            first_inner[vertex_idx] = join;
582        }
583    }
584}
585
586fn augment_path<G>(
587    graph: &G,
588    outer: G::NodeId,
589    other: G::NodeId,
590    mate: &mut [Option<G::NodeId>],
591    label: &[Label<G>],
592) where
593    G: NodeIndexable,
594{
595    let outer_idx = graph.to_index(outer);
596
597    let temp = mate[outer_idx];
598    let temp_idx = temp.map_or(graph.dummy_idx(), |id| graph.to_index(id));
599    mate[outer_idx] = Some(other);
600
601    if mate[temp_idx] != Some(outer) {
602        // We are at the end of the path and so the entire path is completely
603        // rematched/augmented.
604    } else if let Label::Vertex(vertex) = label[outer_idx] {
605        // The outer vertex has a vertex label which refers to another outer
606        // vertex on the path. So we set this another outer node as the mate for
607        // the previous mate of the outer node.
608        mate[temp_idx] = Some(vertex);
609        if let Some(temp) = temp {
610            augment_path(graph, vertex, temp, mate, label);
611        }
612    } else if let Label::Edge(_, [source, target]) = label[outer_idx] {
613        // The outer vertex has an edge label which refers to an edge in a
614        // blossom. We need to augment both directions along the blossom.
615        augment_path(graph, source, target, mate, label);
616        augment_path(graph, target, source, mate, label);
617    } else {
618        panic!("Unexpected label when augmenting path");
619    }
620}