petgraph/algo/
matching.rs

1use std::collections::VecDeque;
2use std::hash::Hash;
3
4use crate::visit::{
5    EdgeRef, GraphBase, IntoEdges, IntoNeighbors, IntoNodeIdentifiers, NodeCount, NodeIndexable,
6    VisitMap, Visitable,
7};
8
9/// Computed
10/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
11/// of the graph.
12pub struct Matching<G: GraphBase> {
13    graph: G,
14    mate: Vec<Option<G::NodeId>>,
15    n_edges: usize,
16}
17
18impl<G> Matching<G>
19where
20    G: GraphBase,
21{
22    fn new(graph: G, mate: Vec<Option<G::NodeId>>, n_edges: usize) -> Self {
23        Self {
24            graph,
25            mate,
26            n_edges,
27        }
28    }
29}
30
31impl<G> Matching<G>
32where
33    G: NodeIndexable,
34{
35    /// Gets the matched counterpart of given node, if there is any.
36    ///
37    /// Returns `None` if the node is not matched or does not exist.
38    pub fn mate(&self, node: G::NodeId) -> Option<G::NodeId> {
39        self.mate.get(self.graph.to_index(node)).and_then(|&id| id)
40    }
41
42    /// Iterates over all edges from the matching.
43    ///
44    /// An edge is represented by its endpoints. The graph is considered
45    /// undirected and every pair of matched nodes is reported only once.
46    pub fn edges(&self) -> MatchedEdges<'_, G> {
47        MatchedEdges {
48            graph: &self.graph,
49            mate: self.mate.as_slice(),
50            current: 0,
51        }
52    }
53
54    /// Iterates over all nodes from the matching.
55    pub fn nodes(&self) -> MatchedNodes<'_, G> {
56        MatchedNodes {
57            graph: &self.graph,
58            mate: self.mate.as_slice(),
59            current: 0,
60        }
61    }
62
63    /// Returns `true` if given edge is in the matching, or `false` otherwise.
64    ///
65    /// If any of the nodes does not exist, `false` is returned.
66    pub fn contains_edge(&self, a: G::NodeId, b: G::NodeId) -> bool {
67        match self.mate(a) {
68            Some(mate) => mate == b,
69            None => false,
70        }
71    }
72
73    /// Returns `true` if given node is in the matching, or `false` otherwise.
74    ///
75    /// If the node does not exist, `false` is returned.
76    pub fn contains_node(&self, node: G::NodeId) -> bool {
77        self.mate(node).is_some()
78    }
79
80    /// Gets the number of matched **edges**.
81    pub fn len(&self) -> usize {
82        self.n_edges
83    }
84
85    /// Returns `true` if the number of matched **edges** is 0.
86    pub fn is_empty(&self) -> bool {
87        self.len() == 0
88    }
89}
90
91impl<G> Matching<G>
92where
93    G: NodeCount,
94{
95    /// Returns `true` if the matching is perfect.
96    ///
97    /// A matching is
98    /// [*perfect*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
99    /// if every node in the graph is incident to an edge from the matching.
100    pub fn is_perfect(&self) -> bool {
101        let n_nodes = self.graph.node_count();
102        n_nodes % 2 == 0 && self.n_edges == n_nodes / 2
103    }
104}
105
106trait WithDummy: NodeIndexable {
107    fn dummy_idx(&self) -> usize;
108    /// Convert `i` to a node index, returns None for the dummy node
109    fn try_from_index(&self, i: usize) -> Option<Self::NodeId>;
110}
111
112impl<G: NodeIndexable> WithDummy for G {
113    fn dummy_idx(&self) -> usize {
114        // Gabow numbers the vertices from 1 to n, and uses 0 as the dummy
115        // vertex. Our vertex indices are zero-based and so we use the node
116        // bound as the dummy node.
117        self.node_bound()
118    }
119
120    fn try_from_index(&self, i: usize) -> Option<Self::NodeId> {
121        if i != self.dummy_idx() {
122            Some(self.from_index(i))
123        } else {
124            None
125        }
126    }
127}
128
129pub struct MatchedNodes<'a, G: GraphBase> {
130    graph: &'a G,
131    mate: &'a [Option<G::NodeId>],
132    current: usize,
133}
134
135impl<G> Iterator for MatchedNodes<'_, G>
136where
137    G: NodeIndexable,
138{
139    type Item = G::NodeId;
140
141    fn next(&mut self) -> Option<Self::Item> {
142        while self.current != self.mate.len() {
143            let current = self.current;
144            self.current += 1;
145
146            if self.mate[current].is_some() {
147                return Some(self.graph.from_index(current));
148            }
149        }
150
151        None
152    }
153}
154
155pub struct MatchedEdges<'a, G: GraphBase> {
156    graph: &'a G,
157    mate: &'a [Option<G::NodeId>],
158    current: usize,
159}
160
161impl<G> Iterator for MatchedEdges<'_, G>
162where
163    G: NodeIndexable,
164{
165    type Item = (G::NodeId, G::NodeId);
166
167    fn next(&mut self) -> Option<Self::Item> {
168        while self.current != self.mate.len() {
169            let current = self.current;
170            self.current += 1;
171
172            if let Some(mate) = self.mate[current] {
173                // Check if the mate is a node after the current one. If not, then
174                // do not report that edge since it has been already reported (the
175                // graph is considered undirected).
176                if self.graph.to_index(mate) > current {
177                    let this = self.graph.from_index(current);
178                    return Some((this, mate));
179                }
180            }
181        }
182
183        None
184    }
185}
186
187/// \[Generic\] Compute a
188/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using a
189/// greedy heuristic.
190///
191/// The input graph is treated as if undirected. The underlying heuristic is
192/// unspecified, but is guaranteed to be bounded by *O(|V| + |E|)*. No
193/// guarantees about the output are given other than that it is a valid
194/// matching.
195///
196/// If you require a maximum matching, use [`maximum_matching`][1] function
197/// instead.
198///
199/// [1]: fn.maximum_matching.html
200pub fn greedy_matching<G>(graph: G) -> Matching<G>
201where
202    G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
203    G::NodeId: Eq + Hash,
204    G::EdgeId: Eq + Hash,
205{
206    let (mates, n_edges) = greedy_matching_inner(&graph);
207    Matching::new(graph, mates, n_edges)
208}
209
210#[inline]
211fn greedy_matching_inner<G>(graph: &G) -> (Vec<Option<G::NodeId>>, usize)
212where
213    G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
214{
215    let mut mate = vec![None; graph.node_bound()];
216    let mut n_edges = 0;
217    let visited = &mut graph.visit_map();
218
219    for start in graph.node_identifiers() {
220        let mut last = Some(start);
221
222        // Function non_backtracking_dfs does not expand the node if it has been
223        // already visited.
224        non_backtracking_dfs(graph, start, visited, |next| {
225            // Alternate matched and unmatched edges.
226            if let Some(pred) = last.take() {
227                mate[graph.to_index(pred)] = Some(next);
228                mate[graph.to_index(next)] = Some(pred);
229                n_edges += 1;
230            } else {
231                last = Some(next);
232            }
233        });
234    }
235
236    (mate, n_edges)
237}
238
239fn non_backtracking_dfs<G, F>(graph: &G, source: G::NodeId, visited: &mut G::Map, mut visitor: F)
240where
241    G: Visitable + IntoNeighbors,
242    F: FnMut(G::NodeId),
243{
244    if visited.visit(source) {
245        for target in graph.neighbors(source) {
246            if !visited.is_visited(&target) {
247                visitor(target);
248                non_backtracking_dfs(graph, target, visited, visitor);
249
250                // Non-backtracking traversal, stop iterating over the
251                // neighbors.
252                break;
253            }
254        }
255    }
256}
257
258#[derive(Clone, Copy)]
259enum Label<G: GraphBase> {
260    None,
261    Start,
262    // If node v is outer node, then label(v) = w is another outer node on path
263    // from v to start u.
264    Vertex(G::NodeId),
265    // If node v is outer node, then label(v) = (r, s) are two outer vertices
266    // (connected by an edge)
267    Edge(G::EdgeId, [G::NodeId; 2]),
268    // Flag is a special label used in searching for the join vertex of two
269    // paths.
270    Flag(G::EdgeId),
271}
272
273impl<G: GraphBase> Label<G> {
274    fn is_outer(&self) -> bool {
275        self != &Label::None
276            && !match self {
277                Label::Flag(_) => true,
278                _ => false,
279            }
280    }
281
282    fn is_inner(&self) -> bool {
283        !self.is_outer()
284    }
285
286    fn to_vertex(&self) -> Option<G::NodeId> {
287        match *self {
288            Label::Vertex(v) => Some(v),
289            _ => None,
290        }
291    }
292
293    fn is_flagged(&self, edge: G::EdgeId) -> bool {
294        match self {
295            Label::Flag(flag) if flag == &edge => true,
296            _ => false,
297        }
298    }
299}
300
301impl<G: GraphBase> Default for Label<G> {
302    fn default() -> Self {
303        Label::None
304    }
305}
306
307impl<G: GraphBase> PartialEq for Label<G> {
308    fn eq(&self, other: &Self) -> bool {
309        match (self, other) {
310            (Label::None, Label::None) => true,
311            (Label::Start, Label::Start) => true,
312            (Label::Vertex(v1), Label::Vertex(v2)) => v1 == v2,
313            (Label::Edge(e1, _), Label::Edge(e2, _)) => e1 == e2,
314            (Label::Flag(e1), Label::Flag(e2)) => e1 == e2,
315            _ => false,
316        }
317    }
318}
319
320/// \[Generic\] Compute the [*maximum
321/// matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using
322/// [Gabow's algorithm][1].
323///
324/// [1]: https://dl.acm.org/doi/10.1145/321941.321942
325///
326/// The input graph is treated as if undirected. The algorithm runs in
327/// *O(|V|³)*. An algorithm with a better time complexity might be used in the
328/// future.
329///
330/// **Panics** if `g.node_bound()` is `std::usize::MAX`.
331///
332/// # Examples
333///
334/// ```
335/// use petgraph::prelude::*;
336/// use petgraph::algo::maximum_matching;
337///
338/// // The example graph:
339/// //
340/// //    +-- b ---- d ---- f
341/// //   /    |      |
342/// //  a     |      |
343/// //   \    |      |
344/// //    +-- c ---- e
345/// //
346/// // Maximum matching: { (a, b), (c, e), (d, f) }
347///
348/// let mut graph: UnGraph<(), ()> = UnGraph::new_undirected();
349/// let a = graph.add_node(());
350/// let b = graph.add_node(());
351/// let c = graph.add_node(());
352/// let d = graph.add_node(());
353/// let e = graph.add_node(());
354/// let f = graph.add_node(());
355/// graph.extend_with_edges(&[(a, b), (a, c), (b, c), (b, d), (c, e), (d, e), (d, f)]);
356///
357/// let matching = maximum_matching(&graph);
358/// assert!(matching.contains_edge(a, b));
359/// assert!(matching.contains_edge(c, e));
360/// assert_eq!(matching.mate(d), Some(f));
361/// assert_eq!(matching.mate(f), Some(d));
362/// ```
363pub fn maximum_matching<G>(graph: G) -> Matching<G>
364where
365    G: Visitable + NodeIndexable + IntoNodeIdentifiers + IntoEdges,
366{
367    // The dummy identifier needs an unused index
368    assert_ne!(
369        graph.node_bound(),
370        std::usize::MAX,
371        "The input graph capacity should be strictly less than std::usize::MAX."
372    );
373
374    // Greedy algorithm should create a fairly good initial matching. The hope
375    // is that it speeds up the computation by doing les work in the complex
376    // algorithm.
377    let (mut mate, mut n_edges) = greedy_matching_inner(&graph);
378
379    // Gabow's algorithm uses a dummy node in the mate array.
380    mate.push(None);
381    let len = graph.node_bound() + 1;
382    debug_assert_eq!(mate.len(), len);
383
384    let mut label: Vec<Label<G>> = vec![Label::None; len];
385    let mut first_inner = vec![std::usize::MAX; len];
386    let visited = &mut graph.visit_map();
387
388    for start in 0..graph.node_bound() {
389        if mate[start].is_some() {
390            // The vertex is already matched. A start must be a free vertex.
391            continue;
392        }
393
394        // Begin search from the node.
395        label[start] = Label::Start;
396        first_inner[start] = graph.dummy_idx();
397        graph.reset_map(visited);
398
399        // start is never a dummy index
400        let start = graph.from_index(start);
401
402        // Queue will contain outer vertices that should be processed next. The
403        // start vertex is considered an outer vertex.
404        let mut queue = VecDeque::new();
405        queue.push_back(start);
406        // Mark the start vertex so it is not processed repeatedly.
407        visited.visit(start);
408
409        'search: while let Some(outer_vertex) = queue.pop_front() {
410            for edge in graph.edges(outer_vertex) {
411                if edge.source() == edge.target() {
412                    // Ignore self-loops.
413                    continue;
414                }
415
416                let other_vertex = edge.target();
417                let other_idx = graph.to_index(other_vertex);
418
419                if mate[other_idx].is_none() && other_vertex != start {
420                    // An augmenting path was found. Augment the matching. If
421                    // `other` is actually the start node, then the augmentation
422                    // must not be performed, because the start vertex would be
423                    // incident to two edges, which violates the matching
424                    // property.
425                    mate[other_idx] = Some(outer_vertex);
426                    augment_path(&graph, outer_vertex, other_vertex, &mut mate, &label);
427                    n_edges += 1;
428
429                    // The path is augmented, so the start is no longer free
430                    // vertex. We need to begin with a new start.
431                    break 'search;
432                } else if label[other_idx].is_outer() {
433                    // The `other` is an outer vertex (a label has been set to
434                    // it). An odd cycle (blossom) was found. Assign this edge
435                    // as a label to all inner vertices in paths P(outer) and
436                    // P(other).
437                    find_join(
438                        &graph,
439                        edge,
440                        &mate,
441                        &mut label,
442                        &mut first_inner,
443                        |labeled| {
444                            if visited.visit(labeled) {
445                                queue.push_back(labeled);
446                            }
447                        },
448                    );
449                } else {
450                    let mate_vertex = mate[other_idx];
451                    let mate_idx = mate_vertex.map_or(graph.dummy_idx(), |id| graph.to_index(id));
452
453                    if label[mate_idx].is_inner() {
454                        // Mate of `other` vertex is inner (no label has been
455                        // set to it so far). But it actually is an outer vertex
456                        // (it is on a path to the start vertex that begins with
457                        // a matched edge, since it is a mate of `other`).
458                        // Assign the label of this mate to the `outer` vertex,
459                        // so the path for it can be reconstructed using `mate`
460                        // and this label.
461                        label[mate_idx] = Label::Vertex(outer_vertex);
462                        first_inner[mate_idx] = other_idx;
463                    }
464
465                    // Add the vertex to the queue only if it's not the dummy and this is its first
466                    // discovery.
467                    if let Some(mate_vertex) = mate_vertex {
468                        if visited.visit(mate_vertex) {
469                            queue.push_back(mate_vertex);
470                        }
471                    }
472                }
473            }
474        }
475
476        // Reset the labels. All vertices are inner for the next search.
477        for lbl in label.iter_mut() {
478            *lbl = Label::None;
479        }
480    }
481
482    // Discard the dummy node.
483    mate.pop();
484
485    Matching::new(graph, mate, n_edges)
486}
487
488fn find_join<G, F>(
489    graph: &G,
490    edge: G::EdgeRef,
491    mate: &[Option<G::NodeId>],
492    label: &mut [Label<G>],
493    first_inner: &mut [usize],
494    mut visitor: F,
495) where
496    G: IntoEdges + NodeIndexable + Visitable,
497    F: FnMut(G::NodeId),
498{
499    // Simultaneously traverse the inner vertices on paths P(source) and
500    // P(target) to find a join vertex - an inner vertex that is shared by these
501    // paths.
502    let source = graph.to_index(edge.source());
503    let target = graph.to_index(edge.target());
504
505    let mut left = first_inner[source];
506    let mut right = first_inner[target];
507
508    if left == right {
509        // No vertices can be labeled, since both paths already refer to a
510        // common vertex - the join.
511        return;
512    }
513
514    // Flag the (first) inner vertices. This ensures that they are assigned the
515    // join as their first inner vertex.
516    let flag = Label::Flag(edge.id());
517    label[left] = flag;
518    label[right] = flag;
519
520    // Find the join.
521    let join = loop {
522        // Swap the sides. Do not swap if the right side is already finished.
523        if right != graph.dummy_idx() {
524            std::mem::swap(&mut left, &mut right);
525        }
526
527        // Set left to the next inner vertex in P(source) or P(target).
528        // The unwraps are safe because left is not the dummy node.
529        let left_mate = graph.to_index(mate[left].unwrap());
530        let next_inner = label[left_mate].to_vertex().unwrap();
531        left = first_inner[graph.to_index(next_inner)];
532
533        if !label[left].is_flagged(edge.id()) {
534            // The inner vertex is not flagged yet, so flag it.
535            label[left] = flag;
536        } else {
537            // The inner vertex is already flagged. It means that the other side
538            // had to visit it already. Therefore it is the join vertex.
539            break left;
540        }
541    };
542
543    // Label all inner vertices on P(source) and P(target) with the found join.
544    for endpoint in [source, target].iter().copied() {
545        let mut inner = first_inner[endpoint];
546        while inner != join {
547            // Notify the caller about labeling a vertex.
548            if let Some(ix) = graph.try_from_index(inner) {
549                visitor(ix);
550            }
551
552            label[inner] = Label::Edge(edge.id(), [edge.source(), edge.target()]);
553            first_inner[inner] = join;
554            let inner_mate = graph.to_index(mate[inner].unwrap());
555            let next_inner = label[inner_mate].to_vertex().unwrap();
556            inner = first_inner[graph.to_index(next_inner)];
557        }
558    }
559
560    for (vertex_idx, vertex_label) in label.iter().enumerate() {
561        // To all outer vertices that are on paths P(source) and P(target) until
562        // the join, se the join as their first inner vertex.
563        if vertex_idx != graph.dummy_idx()
564            && vertex_label.is_outer()
565            && label[first_inner[vertex_idx]].is_outer()
566        {
567            first_inner[vertex_idx] = join;
568        }
569    }
570}
571
572fn augment_path<G>(
573    graph: &G,
574    outer: G::NodeId,
575    other: G::NodeId,
576    mate: &mut [Option<G::NodeId>],
577    label: &[Label<G>],
578) where
579    G: NodeIndexable,
580{
581    let outer_idx = graph.to_index(outer);
582
583    let temp = mate[outer_idx];
584    let temp_idx = temp.map_or(graph.dummy_idx(), |id| graph.to_index(id));
585    mate[outer_idx] = Some(other);
586
587    if mate[temp_idx] != Some(outer) {
588        // We are at the end of the path and so the entire path is completely
589        // rematched/augmented.
590    } else if let Label::Vertex(vertex) = label[outer_idx] {
591        // The outer vertex has a vertex label which refers to another outer
592        // vertex on the path. So we set this another outer node as the mate for
593        // the previous mate of the outer node.
594        mate[temp_idx] = Some(vertex);
595        if let Some(temp) = temp {
596            augment_path(graph, vertex, temp, mate, label);
597        }
598    } else if let Label::Edge(_, [source, target]) = label[outer_idx] {
599        // The outer vertex has an edge label which refers to an edge in a
600        // blossom. We need to augment both directions along the blossom.
601        augment_path(graph, source, target, mate, label);
602        augment_path(graph, target, source, mate, label);
603    } else {
604        panic!("Unexpected label when augmenting path");
605    }
606}