petgraph/algo/bellman_ford.rs
1//! Bellman-Ford algorithms.
2
3use crate::prelude::*;
4
5use crate::visit::{IntoEdges, IntoNodeIdentifiers, NodeCount, NodeIndexable, VisitMap, Visitable};
6
7use super::{FloatMeasure, NegativeCycle};
8
9#[derive(Debug, Clone)]
10pub struct Paths<NodeId, EdgeWeight> {
11 pub distances: Vec<EdgeWeight>,
12 pub predecessors: Vec<Option<NodeId>>,
13}
14
15/// \[Generic\] Compute shortest paths from node `source` to all other.
16///
17/// Using the [Bellman–Ford algorithm][bf]; negative edge costs are
18/// permitted, but the graph must not have a cycle of negative weights
19/// (in that case it will return an error).
20///
21/// On success, return one vec with path costs, and another one which points
22/// out the predecessor of a node along a shortest path. The vectors
23/// are indexed by the graph's node indices.
24///
25/// [bf]: https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
26///
27/// # Example
28/// ```rust
29/// use petgraph::Graph;
30/// use petgraph::algo::bellman_ford;
31/// use petgraph::prelude::*;
32///
33/// let mut g = Graph::new();
34/// let a = g.add_node(()); // node with no weight
35/// let b = g.add_node(());
36/// let c = g.add_node(());
37/// let d = g.add_node(());
38/// let e = g.add_node(());
39/// let f = g.add_node(());
40/// g.extend_with_edges(&[
41/// (0, 1, 2.0),
42/// (0, 3, 4.0),
43/// (1, 2, 1.0),
44/// (1, 5, 7.0),
45/// (2, 4, 5.0),
46/// (4, 5, 1.0),
47/// (3, 4, 1.0),
48/// ]);
49///
50/// // Graph represented with the weight of each edge
51/// //
52/// // 2 1
53/// // a ----- b ----- c
54/// // | 4 | 7 |
55/// // d f | 5
56/// // | 1 | 1 |
57/// // \------ e ------/
58///
59/// let path = bellman_ford(&g, a);
60/// assert!(path.is_ok());
61/// let path = path.unwrap();
62/// assert_eq!(path.distances, vec![ 0.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
63/// assert_eq!(path.predecessors, vec![None, Some(a),Some(b),Some(a), Some(d), Some(e)]);
64///
65/// // Node f (indice 5) can be reach from a with a path costing 6.
66/// // Predecessor of f is Some(e) which predecessor is Some(d) which predecessor is Some(a).
67/// // Thus the path from a to f is a <-> d <-> e <-> f
68///
69/// let graph_with_neg_cycle = Graph::<(), f32, Undirected>::from_edges(&[
70/// (0, 1, -2.0),
71/// (0, 3, -4.0),
72/// (1, 2, -1.0),
73/// (1, 5, -25.0),
74/// (2, 4, -5.0),
75/// (4, 5, -25.0),
76/// (3, 4, -1.0),
77/// ]);
78///
79/// assert!(bellman_ford(&graph_with_neg_cycle, NodeIndex::new(0)).is_err());
80/// ```
81pub fn bellman_ford<G>(
82 g: G,
83 source: G::NodeId,
84) -> Result<Paths<G::NodeId, G::EdgeWeight>, NegativeCycle>
85where
86 G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable,
87 G::EdgeWeight: FloatMeasure,
88{
89 let ix = |i| g.to_index(i);
90
91 // Step 1 and Step 2: initialize and relax
92 let (distances, predecessors) = bellman_ford_initialize_relax(g, source);
93
94 // Step 3: check for negative weight cycle
95 for i in g.node_identifiers() {
96 for edge in g.edges(i) {
97 let j = edge.target();
98 let w = *edge.weight();
99 if distances[ix(i)] + w < distances[ix(j)] {
100 return Err(NegativeCycle(()));
101 }
102 }
103 }
104
105 Ok(Paths {
106 distances,
107 predecessors,
108 })
109}
110
111/// \[Generic\] Find the path of a negative cycle reachable from node `source`.
112///
113/// Using the [find_negative_cycle][nc]; will search the Graph for negative cycles using
114/// [Bellman–Ford algorithm][bf]. If no negative cycle is found the function will return `None`.
115///
116/// If a negative cycle is found from source, return one vec with a path of `NodeId`s.
117///
118/// The time complexity of this algorithm should be the same as the Bellman-Ford (O(|V|·|E|)).
119///
120/// [nc]: https://blogs.asarkar.com/assets/docs/algorithms-curated/Negative-Weight%20Cycle%20Algorithms%20-%20Huang.pdf
121/// [bf]: https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
122///
123/// # Example
124/// ```rust
125/// use petgraph::Graph;
126/// use petgraph::algo::find_negative_cycle;
127/// use petgraph::prelude::*;
128///
129/// let graph_with_neg_cycle = Graph::<(), f32, Directed>::from_edges(&[
130/// (0, 1, 1.),
131/// (0, 2, 1.),
132/// (0, 3, 1.),
133/// (1, 3, 1.),
134/// (2, 1, 1.),
135/// (3, 2, -3.),
136/// ]);
137///
138/// let path = find_negative_cycle(&graph_with_neg_cycle, NodeIndex::new(0));
139/// assert_eq!(
140/// path,
141/// Some([NodeIndex::new(1), NodeIndex::new(3), NodeIndex::new(2)].to_vec())
142/// );
143/// ```
144pub fn find_negative_cycle<G>(g: G, source: G::NodeId) -> Option<Vec<G::NodeId>>
145where
146 G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable + Visitable,
147 G::EdgeWeight: FloatMeasure,
148{
149 let ix = |i| g.to_index(i);
150 let mut path = Vec::<G::NodeId>::new();
151
152 // Step 1: initialize and relax
153 let (distance, predecessor) = bellman_ford_initialize_relax(g, source);
154
155 // Step 2: Check for negative weight cycle
156 'outer: for i in g.node_identifiers() {
157 for edge in g.edges(i) {
158 let j = edge.target();
159 let w = *edge.weight();
160 if distance[ix(i)] + w < distance[ix(j)] {
161 // Step 3: negative cycle found
162 let start = j;
163 let mut node = start;
164 let mut visited = g.visit_map();
165 // Go backward in the predecessor chain
166 loop {
167 let ancestor = match predecessor[ix(node)] {
168 Some(predecessor_node) => predecessor_node,
169 None => node, // no predecessor, self cycle
170 };
171 // We have only 2 ways to find the cycle and break the loop:
172 // 1. start is reached
173 if ancestor == start {
174 path.push(ancestor);
175 break;
176 }
177 // 2. some node was reached twice
178 else if visited.is_visited(&ancestor) {
179 // Drop any node in path that is before the first ancestor
180 let pos = path
181 .iter()
182 .position(|&p| p == ancestor)
183 .expect("we should always have a position");
184 path = path[pos..path.len()].to_vec();
185
186 break;
187 }
188
189 // None of the above, some middle path node
190 path.push(ancestor);
191 visited.visit(ancestor);
192 node = ancestor;
193 }
194 // We are done here
195 break 'outer;
196 }
197 }
198 }
199 if !path.is_empty() {
200 // Users will probably need to follow the path of the negative cycle
201 // so it should be in the reverse order than it was found by the algorithm.
202 path.reverse();
203 Some(path)
204 } else {
205 None
206 }
207}
208
209// Perform Step 1 and Step 2 of the Bellman-Ford algorithm.
210#[inline(always)]
211fn bellman_ford_initialize_relax<G>(
212 g: G,
213 source: G::NodeId,
214) -> (Vec<G::EdgeWeight>, Vec<Option<G::NodeId>>)
215where
216 G: NodeCount + IntoNodeIdentifiers + IntoEdges + NodeIndexable,
217 G::EdgeWeight: FloatMeasure,
218{
219 // Step 1: initialize graph
220 let mut predecessor = vec![None; g.node_bound()];
221 let mut distance = vec![<_>::infinite(); g.node_bound()];
222 let ix = |i| g.to_index(i);
223 distance[ix(source)] = <_>::zero();
224
225 // Step 2: relax edges repeatedly
226 for _ in 1..g.node_count() {
227 let mut did_update = false;
228 for i in g.node_identifiers() {
229 for edge in g.edges(i) {
230 let j = edge.target();
231 let w = *edge.weight();
232 if distance[ix(i)] + w < distance[ix(j)] {
233 distance[ix(j)] = distance[ix(i)] + w;
234 predecessor[ix(j)] = Some(i);
235 did_update = true;
236 }
237 }
238 }
239 if !did_update {
240 break;
241 }
242 }
243 (distance, predecessor)
244}