itertools/next_array.rs
1use core::mem::{self, MaybeUninit};
2
3/// An array of at most `N` elements.
4struct ArrayBuilder<T, const N: usize> {
5 /// The (possibly uninitialized) elements of the `ArrayBuilder`.
6 ///
7 /// # Safety
8 ///
9 /// The elements of `arr[..len]` are valid `T`s.
10 arr: [MaybeUninit<T>; N],
11
12 /// The number of leading elements of `arr` that are valid `T`s, len <= N.
13 len: usize,
14}
15
16impl<T, const N: usize> ArrayBuilder<T, N> {
17 /// Initializes a new, empty `ArrayBuilder`.
18 pub fn new() -> Self {
19 // SAFETY: The safety invariant of `arr` trivially holds for `len = 0`.
20 Self {
21 arr: [(); N].map(|_| MaybeUninit::uninit()),
22 len: 0,
23 }
24 }
25
26 /// Pushes `value` onto the end of the array.
27 ///
28 /// # Panics
29 ///
30 /// This panics if `self.len >= N`.
31 #[inline(always)]
32 pub fn push(&mut self, value: T) {
33 // PANICS: This will panic if `self.len >= N`.
34 let place = &mut self.arr[self.len];
35 // SAFETY: The safety invariant of `self.arr` applies to elements at
36 // indices `0..self.len` — not to the element at `self.len`. Writing to
37 // the element at index `self.len` therefore does not violate the safety
38 // invariant of `self.arr`. Even if this line panics, we have not
39 // created any intermediate invalid state.
40 *place = MaybeUninit::new(value);
41 // Lemma: `self.len < N`. By invariant, `self.len <= N`. Above, we index
42 // into `self.arr`, which has size `N`, at index `self.len`. If `self.len == N`
43 // at that point, that index would be out-of-bounds, and the index
44 // operation would panic. Thus, `self.len != N`, and since `self.len <= N`,
45 // that means that `self.len < N`.
46 //
47 // PANICS: Since `self.len < N`, and since `N <= usize::MAX`,
48 // `self.len + 1 <= usize::MAX`, and so `self.len += 1` will not
49 // overflow. Overflow is the only panic condition of `+=`.
50 //
51 // SAFETY:
52 // - We are required to uphold the invariant that `self.len <= N`.
53 // Since, by the preceding lemma, `self.len < N` at this point in the
54 // code, `self.len += 1` results in `self.len <= N`.
55 // - We are required to uphold the invariant that `self.arr[..self.len]`
56 // are valid instances of `T`. Since this invariant already held when
57 // this method was called, and since we only increment `self.len`
58 // by 1 here, we only need to prove that the element at
59 // `self.arr[self.len]` (using the value of `self.len` before incrementing)
60 // is valid. Above, we construct `place` to point to `self.arr[self.len]`,
61 // and then initialize `*place` to `MaybeUninit::new(value)`, which is
62 // a valid `T` by construction.
63 self.len += 1;
64 }
65
66 /// Consumes the elements in the `ArrayBuilder` and returns them as an array
67 /// `[T; N]`.
68 ///
69 /// If `self.len() < N`, this returns `None`.
70 pub fn take(&mut self) -> Option<[T; N]> {
71 if self.len == N {
72 // SAFETY: Decreasing the value of `self.len` cannot violate the
73 // safety invariant on `self.arr`.
74 self.len = 0;
75
76 // SAFETY: Since `self.len` is 0, `self.arr` may safely contain
77 // uninitialized elements.
78 let arr = mem::replace(&mut self.arr, [(); N].map(|_| MaybeUninit::uninit()));
79
80 Some(arr.map(|v| {
81 // SAFETY: We know that all elements of `arr` are valid because
82 // we checked that `len == N`.
83 unsafe { v.assume_init() }
84 }))
85 } else {
86 None
87 }
88 }
89}
90
91impl<T, const N: usize> AsMut<[T]> for ArrayBuilder<T, N> {
92 fn as_mut(&mut self) -> &mut [T] {
93 let valid = &mut self.arr[..self.len];
94 // SAFETY: By invariant on `self.arr`, the elements of `self.arr` at
95 // indices `0..self.len` are in a valid state. Since `valid` references
96 // only these elements, the safety precondition of
97 // `slice_assume_init_mut` is satisfied.
98 unsafe { slice_assume_init_mut(valid) }
99 }
100}
101
102impl<T, const N: usize> Drop for ArrayBuilder<T, N> {
103 // We provide a non-trivial `Drop` impl, because the trivial impl would be a
104 // no-op; `MaybeUninit<T>` has no innate awareness of its own validity, and
105 // so it can only forget its contents. By leveraging the safety invariant of
106 // `self.arr`, we do know which elements of `self.arr` are valid, and can
107 // selectively run their destructors.
108 fn drop(&mut self) {
109 // SAFETY:
110 // - by invariant on `&mut [T]`, `self.as_mut()` is:
111 // - valid for reads and writes
112 // - properly aligned
113 // - non-null
114 // - the dropped `T` are valid for dropping; they do not have any
115 // additional library invariants that we've violated
116 // - no other pointers to `valid` exist (since we're in the context of
117 // `drop`)
118 unsafe { core::ptr::drop_in_place(self.as_mut()) }
119 }
120}
121
122/// Assuming all the elements are initialized, get a mutable slice to them.
123///
124/// # Safety
125///
126/// The caller guarantees that the elements `T` referenced by `slice` are in a
127/// valid state.
128unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] {
129 // SAFETY: Casting `&mut [MaybeUninit<T>]` to `&mut [T]` is sound, because
130 // `MaybeUninit<T>` is guaranteed to have the same size, alignment and ABI
131 // as `T`, and because the caller has guaranteed that `slice` is in the
132 // valid state.
133 unsafe { &mut *(slice as *mut [MaybeUninit<T>] as *mut [T]) }
134}
135
136/// Equivalent to `it.next_array()`.
137pub(crate) fn next_array<I, const N: usize>(it: &mut I) -> Option<[I::Item; N]>
138where
139 I: Iterator,
140{
141 let mut builder = ArrayBuilder::new();
142 for _ in 0..N {
143 builder.push(it.next()?);
144 }
145 builder.take()
146}
147
148#[cfg(test)]
149mod test {
150 use super::ArrayBuilder;
151
152 #[test]
153 fn zero_len_take() {
154 let mut builder = ArrayBuilder::<(), 0>::new();
155 let taken = builder.take();
156 assert_eq!(taken, Some([(); 0]));
157 }
158
159 #[test]
160 #[should_panic]
161 fn zero_len_push() {
162 let mut builder = ArrayBuilder::<(), 0>::new();
163 builder.push(());
164 }
165
166 #[test]
167 fn push_4() {
168 let mut builder = ArrayBuilder::<(), 4>::new();
169 assert_eq!(builder.take(), None);
170
171 builder.push(());
172 assert_eq!(builder.take(), None);
173
174 builder.push(());
175 assert_eq!(builder.take(), None);
176
177 builder.push(());
178 assert_eq!(builder.take(), None);
179
180 builder.push(());
181 assert_eq!(builder.take(), Some([(); 4]));
182 }
183
184 #[test]
185 fn tracked_drop() {
186 use std::panic::{catch_unwind, AssertUnwindSafe};
187 use std::sync::atomic::{AtomicU16, Ordering};
188
189 static DROPPED: AtomicU16 = AtomicU16::new(0);
190
191 #[derive(Debug, PartialEq)]
192 struct TrackedDrop;
193
194 impl Drop for TrackedDrop {
195 fn drop(&mut self) {
196 DROPPED.fetch_add(1, Ordering::Relaxed);
197 }
198 }
199
200 {
201 let builder = ArrayBuilder::<TrackedDrop, 0>::new();
202 assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
203 drop(builder);
204 assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
205 }
206
207 {
208 let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
209 builder.push(TrackedDrop);
210 assert_eq!(builder.take(), None);
211 assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
212 drop(builder);
213 assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 1);
214 }
215
216 {
217 let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
218 builder.push(TrackedDrop);
219 builder.push(TrackedDrop);
220 assert!(matches!(builder.take(), Some(_)));
221 assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 2);
222 drop(builder);
223 assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
224 }
225
226 {
227 let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
228
229 builder.push(TrackedDrop);
230 builder.push(TrackedDrop);
231
232 assert!(catch_unwind(AssertUnwindSafe(|| {
233 builder.push(TrackedDrop);
234 }))
235 .is_err());
236
237 assert_eq!(DROPPED.load(Ordering::Relaxed), 1);
238
239 drop(builder);
240
241 assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 3);
242 }
243
244 {
245 let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
246
247 builder.push(TrackedDrop);
248 builder.push(TrackedDrop);
249
250 assert!(catch_unwind(AssertUnwindSafe(|| {
251 builder.push(TrackedDrop);
252 }))
253 .is_err());
254
255 assert_eq!(DROPPED.load(Ordering::Relaxed), 1);
256
257 assert!(matches!(builder.take(), Some(_)));
258
259 assert_eq!(DROPPED.load(Ordering::Relaxed), 3);
260
261 builder.push(TrackedDrop);
262 builder.push(TrackedDrop);
263
264 assert!(matches!(builder.take(), Some(_)));
265
266 assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 5);
267 }
268 }
269}