itertools/combinations_with_replacement.rs
1use alloc::boxed::Box;
2use alloc::vec::Vec;
3use std::fmt;
4use std::iter::FusedIterator;
5
6use super::lazy_buffer::LazyBuffer;
7use crate::adaptors::checked_binomial;
8
9/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement.
10///
11/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement)
12/// for more information.
13#[derive(Clone)]
14#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
15pub struct CombinationsWithReplacement<I>
16where
17 I: Iterator,
18 I::Item: Clone,
19{
20 indices: Box<[usize]>,
21 pool: LazyBuffer<I>,
22 first: bool,
23}
24
25impl<I> fmt::Debug for CombinationsWithReplacement<I>
26where
27 I: Iterator + fmt::Debug,
28 I::Item: fmt::Debug + Clone,
29{
30 debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first);
31}
32
33/// Create a new `CombinationsWithReplacement` from a clonable iterator.
34pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I>
35where
36 I: Iterator,
37 I::Item: Clone,
38{
39 let indices = alloc::vec![0; k].into_boxed_slice();
40 let pool: LazyBuffer<I> = LazyBuffer::new(iter);
41
42 CombinationsWithReplacement {
43 indices,
44 pool,
45 first: true,
46 }
47}
48
49impl<I> CombinationsWithReplacement<I>
50where
51 I: Iterator,
52 I::Item: Clone,
53{
54 /// Increments indices representing the combination to advance to the next
55 /// (in lexicographic order by increasing sequence) combination.
56 ///
57 /// Returns true if we've run out of combinations, false otherwise.
58 fn increment_indices(&mut self) -> bool {
59 // Check if we need to consume more from the iterator
60 // This will run while we increment our first index digit
61 self.pool.get_next();
62
63 // Work out where we need to update our indices
64 let mut increment = None;
65 for (i, indices_int) in self.indices.iter().enumerate().rev() {
66 if *indices_int < self.pool.len() - 1 {
67 increment = Some((i, indices_int + 1));
68 break;
69 }
70 }
71 match increment {
72 // If we can update the indices further
73 Some((increment_from, increment_value)) => {
74 // We need to update the rightmost non-max value
75 // and all those to the right
76 self.indices[increment_from..].fill(increment_value);
77 false
78 }
79 // Otherwise, we're done
80 None => true,
81 }
82 }
83}
84
85impl<I> Iterator for CombinationsWithReplacement<I>
86where
87 I: Iterator,
88 I::Item: Clone,
89{
90 type Item = Vec<I::Item>;
91
92 fn next(&mut self) -> Option<Self::Item> {
93 if self.first {
94 // In empty edge cases, stop iterating immediately
95 if !(self.indices.is_empty() || self.pool.get_next()) {
96 return None;
97 }
98 self.first = false;
99 } else if self.increment_indices() {
100 return None;
101 }
102 Some(self.pool.get_at(&self.indices))
103 }
104
105 fn nth(&mut self, n: usize) -> Option<Self::Item> {
106 if self.first {
107 // In empty edge cases, stop iterating immediately
108 if !(self.indices.is_empty() || self.pool.get_next()) {
109 return None;
110 }
111 self.first = false;
112 } else if self.increment_indices() {
113 return None;
114 }
115 for _ in 0..n {
116 if self.increment_indices() {
117 return None;
118 }
119 }
120 Some(self.pool.get_at(&self.indices))
121 }
122
123 fn size_hint(&self) -> (usize, Option<usize>) {
124 let (mut low, mut upp) = self.pool.size_hint();
125 low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
126 upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
127 (low, upp)
128 }
129
130 fn count(self) -> usize {
131 let Self {
132 indices,
133 pool,
134 first,
135 } = self;
136 let n = pool.count();
137 remaining_for(n, first, &indices).unwrap()
138 }
139}
140
141impl<I> FusedIterator for CombinationsWithReplacement<I>
142where
143 I: Iterator,
144 I::Item: Clone,
145{
146}
147
148/// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow.
149fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
150 // With a "stars and bars" representation, choose k values with replacement from n values is
151 // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities)
152 // to place k stars and therefore n - 1 bars.
153 // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3].
154 let count = |n: usize, k: usize| {
155 let positions = if n == 0 {
156 k.saturating_sub(1)
157 } else {
158 (n - 1).checked_add(k)?
159 };
160 checked_binomial(positions, k)
161 };
162 let k = indices.len();
163 if first {
164 count(n, k)
165 } else {
166 // The algorithm is similar to the one for combinations *without replacement*,
167 // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted.
168
169 // The combinations generated after the current one can be counted by counting as follows:
170 // - The subsequent combinations that differ in indices[0]:
171 // If subsequent combinations differ in indices[0], then their value for indices[0]
172 // must be at least 1 greater than the current indices[0].
173 // As indices is monotonically sorted, this means we can effectively choose k values with
174 // replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities.
175 // - The subsequent combinations with same indices[0], but differing indices[1]:
176 // Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values,
177 // leading to count(n - 1 - indices[1], k - 1) possibilities.
178 // - (...)
179 // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
180 // Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i).
181 // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
182
183 // Below, `n0` resembles indices[i].
184 indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
185 sum.checked_add(count(n - 1 - *n0, k - i)?)
186 })
187 }
188}