ahash/random_state.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
use core::hash::Hash;
cfg_if::cfg_if! {
if #[cfg(any(
all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes", not(miri)),
all(feature = "nightly-arm-aes", target_arch = "aarch64", target_feature = "aes", not(miri)),
all(feature = "nightly-arm-aes", target_arch = "arm", target_feature = "aes", not(miri)),
))] {
use crate::aes_hash::*;
} else {
use crate::fallback_hash::*;
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "specialize")]{
use crate::BuildHasherExt;
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "std")] {
extern crate std as alloc;
} else {
extern crate alloc;
}
}
#[cfg(feature = "atomic-polyfill")]
use atomic_polyfill as atomic;
#[cfg(not(feature = "atomic-polyfill"))]
use core::sync::atomic;
use alloc::boxed::Box;
use atomic::{AtomicUsize, Ordering};
use core::any::{Any, TypeId};
use core::fmt;
use core::hash::BuildHasher;
use core::hash::Hasher;
pub(crate) const PI: [u64; 4] = [
0x243f_6a88_85a3_08d3,
0x1319_8a2e_0370_7344,
0xa409_3822_299f_31d0,
0x082e_fa98_ec4e_6c89,
];
pub(crate) const PI2: [u64; 4] = [
0x4528_21e6_38d0_1377,
0xbe54_66cf_34e9_0c6c,
0xc0ac_29b7_c97c_50dd,
0x3f84_d5b5_b547_0917,
];
cfg_if::cfg_if! {
if #[cfg(all(feature = "compile-time-rng", any(test, fuzzing)))] {
#[inline]
fn get_fixed_seeds() -> &'static [[u64; 4]; 2] {
use const_random::const_random;
const RAND: [[u64; 4]; 2] = [
[
const_random!(u64),
const_random!(u64),
const_random!(u64),
const_random!(u64),
], [
const_random!(u64),
const_random!(u64),
const_random!(u64),
const_random!(u64),
]
];
&RAND
}
} else if #[cfg(all(feature = "runtime-rng", not(fuzzing)))] {
#[inline]
fn get_fixed_seeds() -> &'static [[u64; 4]; 2] {
use crate::convert::Convert;
static SEEDS: OnceBox<[[u64; 4]; 2]> = OnceBox::new();
SEEDS.get_or_init(|| {
let mut result: [u8; 64] = [0; 64];
getrandom::getrandom(&mut result).expect("getrandom::getrandom() failed.");
Box::new(result.convert())
})
}
} else if #[cfg(feature = "compile-time-rng")] {
#[inline]
fn get_fixed_seeds() -> &'static [[u64; 4]; 2] {
use const_random::const_random;
const RAND: [[u64; 4]; 2] = [
[
const_random!(u64),
const_random!(u64),
const_random!(u64),
const_random!(u64),
], [
const_random!(u64),
const_random!(u64),
const_random!(u64),
const_random!(u64),
]
];
&RAND
}
} else {
#[inline]
fn get_fixed_seeds() -> &'static [[u64; 4]; 2] {
&[PI, PI2]
}
}
}
cfg_if::cfg_if! {
if #[cfg(not(all(target_arch = "arm", target_os = "none")))] {
use once_cell::race::OnceBox;
static RAND_SOURCE: OnceBox<Box<dyn RandomSource + Send + Sync>> = OnceBox::new();
}
}
/// A supplier of Randomness used for different hashers.
/// See [set_random_source].
///
/// If [set_random_source] aHash will default to the best available source of randomness.
/// In order this is:
/// 1. OS provided random number generator (available if the `runtime-rng` flag is enabled which it is by default) - This should be very strong.
/// 2. Strong compile time random numbers used to permute a static "counter". (available if `compile-time-rng` is enabled.
/// __Enabling this is recommended if `runtime-rng` is not possible__)
/// 3. A static counter that adds the memory address of each [RandomState] created permuted with fixed constants.
/// (Similar to above but with fixed keys) - This is the weakest option. The strength of this heavily depends on whether or not ASLR is enabled.
/// (Rust enables ASLR by default)
pub trait RandomSource {
fn gen_hasher_seed(&self) -> usize;
}
struct DefaultRandomSource {
counter: AtomicUsize,
}
impl DefaultRandomSource {
fn new() -> DefaultRandomSource {
DefaultRandomSource {
counter: AtomicUsize::new(&PI as *const _ as usize),
}
}
#[cfg(all(target_arch = "arm", target_os = "none"))]
const fn default() -> DefaultRandomSource {
DefaultRandomSource {
counter: AtomicUsize::new(PI[3] as usize),
}
}
}
impl RandomSource for DefaultRandomSource {
cfg_if::cfg_if! {
if #[cfg(all(target_arch = "arm", target_os = "none"))] {
fn gen_hasher_seed(&self) -> usize {
let stack = self as *const _ as usize;
let previous = self.counter.load(Ordering::Relaxed);
let new = previous.wrapping_add(stack);
self.counter.store(new, Ordering::Relaxed);
new
}
} else {
fn gen_hasher_seed(&self) -> usize {
let stack = self as *const _ as usize;
self.counter.fetch_add(stack, Ordering::Relaxed)
}
}
}
}
cfg_if::cfg_if! {
if #[cfg(all(target_arch = "arm", target_os = "none"))] {
#[inline]
fn get_src() -> &'static dyn RandomSource {
static RAND_SOURCE: DefaultRandomSource = DefaultRandomSource::default();
&RAND_SOURCE
}
} else {
/// Provides an optional way to manually supply a source of randomness for Hasher keys.
///
/// The provided [RandomSource] will be used to be used as a source of randomness by [RandomState] to generate new states.
/// If this method is not invoked the standard source of randomness is used as described in the Readme.
///
/// The source of randomness can only be set once, and must be set before the first RandomState is created.
/// If the source has already been specified `Err` is returned with a `bool` indicating if the set failed because
/// method was previously invoked (true) or if the default source is already being used (false).
#[cfg(not(all(target_arch = "arm", target_os = "none")))]
pub fn set_random_source(source: impl RandomSource + Send + Sync + 'static) -> Result<(), bool> {
RAND_SOURCE.set(Box::new(Box::new(source))).map_err(|s| s.as_ref().type_id() != TypeId::of::<&DefaultRandomSource>())
}
#[inline]
fn get_src() -> &'static dyn RandomSource {
RAND_SOURCE.get_or_init(|| Box::new(Box::new(DefaultRandomSource::new()))).as_ref()
}
}
}
/// Provides a [Hasher] factory. This is typically used (e.g. by [HashMap]) to create
/// [AHasher]s in order to hash the keys of the map. See `build_hasher` below.
///
/// [build_hasher]: ahash::
/// [Hasher]: std::hash::Hasher
/// [BuildHasher]: std::hash::BuildHasher
/// [HashMap]: std::collections::HashMap
///
/// There are multiple constructors each is documented in more detail below:
///
/// | Constructor | Dynamically random? | Seed |
/// |---------------|---------------------|------|
/// |`new` | Each instance unique|_[RandomSource]_|
/// |`generate_with`| Each instance unique|`u64` x 4 + [RandomSource]|
/// |`with_seed` | Fixed per process |`u64` + static random number|
/// |`with_seeds` | Fixed |`u64` x 4|
///
#[derive(Clone)]
pub struct RandomState {
pub(crate) k0: u64,
pub(crate) k1: u64,
pub(crate) k2: u64,
pub(crate) k3: u64,
}
impl fmt::Debug for RandomState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("RandomState { .. }")
}
}
impl RandomState {
/// Create a new `RandomState` `BuildHasher` using random keys.
///
/// Each instance will have a unique set of keys derived from [RandomSource].
///
#[inline]
pub fn new() -> RandomState {
let src = get_src();
let fixed = get_fixed_seeds();
Self::from_keys(&fixed[0], &fixed[1], src.gen_hasher_seed())
}
/// Create a new `RandomState` `BuildHasher` based on the provided seeds, but in such a way
/// that each time it is called the resulting state will be different and of high quality.
/// This allows fixed constant or poor quality seeds to be provided without the problem of different
/// `BuildHasher`s being identical or weak.
///
/// This is done via permuting the provided values with the value of a static counter and memory address.
/// (This makes this method somewhat more expensive than `with_seeds` below which does not do this).
///
/// The provided values (k0-k3) do not need to be of high quality but they should not all be the same value.
#[inline]
pub fn generate_with(k0: u64, k1: u64, k2: u64, k3: u64) -> RandomState {
let src = get_src();
let fixed = get_fixed_seeds();
RandomState::from_keys(&fixed[0], &[k0, k1, k2, k3], src.gen_hasher_seed())
}
fn from_keys(a: &[u64; 4], b: &[u64; 4], c: usize) -> RandomState {
let &[k0, k1, k2, k3] = a;
let mut hasher = AHasher::from_random_state(&RandomState { k0, k1, k2, k3 });
hasher.write_usize(c);
let mix = |l: u64, r: u64| {
let mut h = hasher.clone();
h.write_u64(l);
h.write_u64(r);
h.finish()
};
RandomState {
k0: mix(b[0], b[2]),
k1: mix(b[1], b[3]),
k2: mix(b[2], b[1]),
k3: mix(b[3], b[0]),
}
}
/// Internal. Used by Default.
#[inline]
pub(crate) fn with_fixed_keys() -> RandomState {
let [k0, k1, k2, k3] = get_fixed_seeds()[0];
RandomState { k0, k1, k2, k3 }
}
/// Build a `RandomState` from a single key. The provided key does not need to be of high quality,
/// but all `RandomState`s created from the same key will produce identical hashers.
/// (In contrast to `generate_with` above)
///
/// This allows for explicitly setting the seed to be used.
///
/// Note: This method does not require the provided seed to be strong.
#[inline]
pub fn with_seed(key: usize) -> RandomState {
let fixed = get_fixed_seeds();
RandomState::from_keys(&fixed[0], &fixed[1], key)
}
/// Allows for explicitly setting the seeds to used.
/// All `RandomState`s created with the same set of keys key will produce identical hashers.
/// (In contrast to `generate_with` above)
///
/// Note: If DOS resistance is desired one of these should be a decent quality random number.
/// If 4 high quality random number are not cheaply available this method is robust against 0s being passed for
/// one or more of the parameters or the same value being passed for more than one parameter.
/// It is recommended to pass numbers in order from highest to lowest quality (if there is any difference).
#[inline]
pub const fn with_seeds(k0: u64, k1: u64, k2: u64, k3: u64) -> RandomState {
RandomState {
k0: k0 ^ PI2[0],
k1: k1 ^ PI2[1],
k2: k2 ^ PI2[2],
k3: k3 ^ PI2[3],
}
}
/// Calculates the hash of a single value. This provides a more convenient (and faster) way to obtain a hash:
/// For example:
#[cfg_attr(
feature = "std",
doc = r##" # Examples
```
use std::hash::BuildHasher;
use ahash::RandomState;
let hash_builder = RandomState::new();
let hash = hash_builder.hash_one("Some Data");
```
"##
)]
/// This is similar to:
#[cfg_attr(
feature = "std",
doc = r##" # Examples
```
use std::hash::{BuildHasher, Hash, Hasher};
use ahash::RandomState;
let hash_builder = RandomState::new();
let mut hasher = hash_builder.build_hasher();
"Some Data".hash(&mut hasher);
let hash = hasher.finish();
```
"##
)]
/// (Note that these two ways to get a hash may not produce the same value for the same data)
///
/// This is intended as a convenience for code which *consumes* hashes, such
/// as the implementation of a hash table or in unit tests that check
/// whether a custom [`Hash`] implementation behaves as expected.
///
/// This must not be used in any code which *creates* hashes, such as in an
/// implementation of [`Hash`]. The way to create a combined hash of
/// multiple values is to call [`Hash::hash`] multiple times using the same
/// [`Hasher`], not to call this method repeatedly and combine the results.
#[inline]
pub fn hash_one<T: Hash>(&self, x: T) -> u64
where
Self: Sized,
{
use crate::specialize::CallHasher;
T::get_hash(&x, self)
}
}
/// Creates an instance of RandomState using keys obtained from the random number generator.
/// Each instance created in this way will have a unique set of keys. (But the resulting instance
/// can be used to create many hashers each or which will have the same keys.)
///
/// This is the same as [RandomState::new()]
///
/// NOTE: For safety this trait impl is only available available if either of the flags `runtime-rng` (on by default) or
/// `compile-time-rng` are enabled. This is to prevent weakly keyed maps from being accidentally created. Instead one of
/// constructors for [RandomState] must be used.
#[cfg(any(feature = "compile-time-rng", feature = "runtime-rng", feature = "no-rng"))]
impl Default for RandomState {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl BuildHasher for RandomState {
type Hasher = AHasher;
/// Constructs a new [AHasher] with keys based on this [RandomState] object.
/// This means that two different [RandomState]s will will generate
/// [AHasher]s that will return different hashcodes, but [Hasher]s created from the same [BuildHasher]
/// will generate the same hashes for the same input data.
///
#[cfg_attr(
feature = "std",
doc = r##" # Examples
```
use ahash::{AHasher, RandomState};
use std::hash::{Hasher, BuildHasher};
let build_hasher = RandomState::new();
let mut hasher_1 = build_hasher.build_hasher();
let mut hasher_2 = build_hasher.build_hasher();
hasher_1.write_u32(1234);
hasher_2.write_u32(1234);
assert_eq!(hasher_1.finish(), hasher_2.finish());
let other_build_hasher = RandomState::new();
let mut different_hasher = other_build_hasher.build_hasher();
different_hasher.write_u32(1234);
assert_ne!(different_hasher.finish(), hasher_1.finish());
```
"##
)]
/// [Hasher]: std::hash::Hasher
/// [BuildHasher]: std::hash::BuildHasher
/// [HashMap]: std::collections::HashMap
#[inline]
fn build_hasher(&self) -> AHasher {
AHasher::from_random_state(self)
}
/// Calculates the hash of a single value. This provides a more convenient (and faster) way to obtain a hash:
/// For example:
#[cfg_attr(
feature = "std",
doc = r##" # Examples
```
use std::hash::BuildHasher;
use ahash::RandomState;
let hash_builder = RandomState::new();
let hash = hash_builder.hash_one("Some Data");
```
"##
)]
/// This is similar to:
#[cfg_attr(
feature = "std",
doc = r##" # Examples
```
use std::hash::{BuildHasher, Hash, Hasher};
use ahash::RandomState;
let hash_builder = RandomState::new();
let mut hasher = hash_builder.build_hasher();
"Some Data".hash(&mut hasher);
let hash = hasher.finish();
```
"##
)]
/// (Note that these two ways to get a hash may not produce the same value for the same data)
///
/// This is intended as a convenience for code which *consumes* hashes, such
/// as the implementation of a hash table or in unit tests that check
/// whether a custom [`Hash`] implementation behaves as expected.
///
/// This must not be used in any code which *creates* hashes, such as in an
/// implementation of [`Hash`]. The way to create a combined hash of
/// multiple values is to call [`Hash::hash`] multiple times using the same
/// [`Hasher`], not to call this method repeatedly and combine the results.
#[cfg(feature = "specialize")]
#[inline]
fn hash_one<T: Hash>(&self, x: T) -> u64 {
RandomState::hash_one(self, x)
}
}
#[cfg(feature = "specialize")]
impl BuildHasherExt for RandomState {
#[inline]
fn hash_as_u64<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = AHasherU64 {
buffer: self.k1,
pad: self.k0,
};
value.hash(&mut hasher);
hasher.finish()
}
#[inline]
fn hash_as_fixed_length<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = AHasherFixed(self.build_hasher());
value.hash(&mut hasher);
hasher.finish()
}
#[inline]
fn hash_as_str<T: Hash + ?Sized>(&self, value: &T) -> u64 {
let mut hasher = AHasherStr(self.build_hasher());
value.hash(&mut hasher);
hasher.finish()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_unique() {
let a = RandomState::generate_with(1, 2, 3, 4);
let b = RandomState::generate_with(1, 2, 3, 4);
assert_ne!(a.build_hasher().finish(), b.build_hasher().finish());
}
#[cfg(all(feature = "runtime-rng", not(all(feature = "compile-time-rng", test))))]
#[test]
fn test_not_pi() {
assert_ne!(PI, get_fixed_seeds()[0]);
}
#[cfg(all(feature = "compile-time-rng", any(not(feature = "runtime-rng"), test)))]
#[test]
fn test_not_pi_const() {
assert_ne!(PI, get_fixed_seeds()[0]);
}
#[cfg(all(not(feature = "runtime-rng"), not(feature = "compile-time-rng")))]
#[test]
fn test_pi() {
assert_eq!(PI, get_fixed_seeds()[0]);
}
#[test]
fn test_with_seeds_const() {
const _CONST_RANDOM_STATE: RandomState = RandomState::with_seeds(17, 19, 21, 23);
}
}